
Algorithms and Data Structures
A3. Sorting I: Selection and Insertion Sort

Gabriele Röger and Patrick Schnider

University of Basel

February 20, 2025

1 / 28



Algorithms and Data Structures
February 20, 2025 — A3. Sorting I: Selection and Insertion Sort

A3.1 Sorting

A3.2 Selection Sort

A3.3 Insertion Sort

A3.4 Summary

2 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

A3.1 Sorting

3 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

4 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Relevance

sorting data important for many applications, such as
▶ sorted presentation (e.g. on website)

▶ products sorted by price, rating, . . .
▶ account transactions sorted by transaction date

▶ preprocessing for many efficient search algorithms
▶ How quickly can you find a number in a (physical) telephone

book? How quickly could you do so if the entries were not
sorted?

▶ subroutine of many other algorithms
▶ e.g. a program that renders layered graphical objects might sort

them to determine where objects are covered by other objects

Journal “Computing in Science & Engineering” lists Quicksort as
one of the 10 most important algorithms of the 20th century.

5 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Sorting Problem

Sorting Problem

Input

▶ sequence of n elements e1, . . . , en
▶ each element ei has key ki = key(ei )

▶ partial order ≤ on the keys
reflexive: k ≤ k
transitive: k ≤ k ′ and k ′ ≤ k ′′ ⇒ k ≤ k ′′

antisymmetric: k ≤ k ′ and k ′ ≤ k ⇒ k = k ′

Output

▶ Sequence of the same elements sorted
according to the ordering relation on its keys

Notation: also e ≤ e ′ for key(e) ≤ key(e ′)

6 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Sorting Problem: Examples

Example

Input: ⟨3, 6, 2, 3, 1⟩, key(e) = e, ≤ on the integers
Output: ⟨1, 2, 3, 3, 6⟩

Example

Input: list of all students of the Univ. of Basel,
Input: key(e) = ⟨place of residence of e⟩, lexicographic order
Output: list of all students, sorted by their place of residence

Is the output uniquely defined?

In this course: mostly integers, key(e) = e and ≤ on integers

7 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Interesting Properties of Sorting Algorithms

▶ running time: how many key comparisons and swaps of
elements are executed?
▶ adaptive: algorithms faster if input already (partially) sorted

▶ space consumption: how much space is used on top of the
space occupied by the input sequence?
▶ explicitly or in call stack
▶ in-place: needs no additional storage beyond the input array

and a constant amount of space (independent of input size)

▶ stable: elements with the same value appear in the output
sequence in the same order as they do in the input sequence

▶ comparison-based: uses only key comparisons and swaps of
elements

8 / 28



A3. Sorting I: Selection and Insertion Sort Sorting

Content of the Course

A&DS

sorting comparison-
based

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

9 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

A3.2 Selection Sort

10 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

quicksort

lower bound

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

11 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Informally

0 1 2 3 4 5 6 7

n = 8

▶ identify smallest element at positions 0, . . . , n − 1
and swap it to position 0

▶ identify smallest element at positions 1, . . . , n − 1
and swap it to position 1

▶ . . .

▶ identify smallest element at positions n − 2, n − 1
and swap it to position n - 2

12 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Example

3 7 2 9 7 1 4 5

1 7 2 9 7 3 4 5

1 2 7 9 7 3 4 5

1 2 3 9 7 7 4 5

1 2 3 4 7 7 9 5

1 2 3 4 5 7 9 7

1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

13 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Algorithm

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # i = 0, ..., n-2

4 # find index of minimum element at positions i, ..., n-1

5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position i with minimum element

10 array[i], array[min_index] = array[min_index], array[i]

14 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Selection Sort: Example

i min ind. 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
0 5 3 7 2 9 7 1 4 5
1 2 1 7 2 9 7 3 4 5
2 5 1 2 7 9 7 3 4 5
3 6 1 2 3 9 7 7 4 5
4 7 1 2 3 4 7 7 9 5
5 5 1 2 3 4 5 7 9 7
6 7 1 2 3 4 5 7 9 7

1 2 3 4 5 7 7 9

looking for minimum
among dark entries

red entry is
found minimum

gray entries already sorted

15 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Correctness

Correctness of an algorithm

An algorithm for a computational problem is correct if for every
problem instance provided as input, it

▶ halts, i.e. it finishes its computation in finite time, and

▶ determines a correct solution to the problem instance.

16 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Correctness of Selection Sort

▶ invariant: property that is true during the entire execution of
the algorithm

▶ invariant 1: at the end of each iteration of the outer loop,
all elements at positions ≤ i are sorted.

▶ Invariant 2: at the end of each iteration of the outer loop,
all elements at a position > i are larger (≥) than all elements
at a position ≤ i .

▶ correctness of invariants by (joint) induction

▶ after the last iteration, all elements except for the last one are
in the correct order and the last one is larger (≥) than the
second-last. → entire sequence sorted

▶ Termination: n − 1 iterations of outer loop, each with fewer
than n iterations of inner loop → finite runtime

17 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Properties of Selection Sort

▶ in-place: additional storage does not depend on input size

▶ running time: does only depend on the size of the input
(not adaptive)
exact analysis: later chapter

▶ not stable: can swap the element at position i behind an
element with an equal key, which will not be “repaired” later.

18 / 28



A3. Sorting I: Selection and Insertion Sort Selection Sort

Jupyter Notebook

Jupyter notebook: selection sort.ipynb

19 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

A3.3 Insertion Sort

20 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Content of the Course

A&DS

sorting comparison-
based

selection sort

insertion sort

merge sort

quicksort

lower bound

heapsort

not comparison-
based

overview and
outlook

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

21 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Informally

▶ similar to common method for sorting a hand of playing cards

▶ elements subsequently moved to correct position in the
already sorted part of the sequence

▶ larger elements correspondingly moved to the right

22 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Example

i 0 1 2 3 4 5 6 7

3 7 2 9 7 1 4 5
1 3 7 2 9 7 1 4 5
2 2 3 7 9 7 1 4 5
3 2 3 7 9 7 1 4 5
4 2 3 7 7 9 1 4 5
5 1 2 3 7 7 9 4 5
6 1 2 3 4 7 7 9 5
7 1 2 3 4 5 7 7 9

gray entries
not moved

red entry moved
into sorted range

black entries moved
one position to the right

23 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Algorithm

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(1, n): # i = 1, ..., n - 1

4 # move array[i] to the left until it is

5 # at the correct position.

6 j = i

7 while j > 0 and array[j - 1] > array[j]:

8 # not yet at final position.

9 # swap array[j] and array[j-1]

10 array[j], array[j-1] = array[j-1], array[j]

11 j -= 1

24 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Insertion Sort: Algorithm (Slightly Faster)

previous variant: most assignments to array[j-1] unnecessary

1 def insertion_sort(array):

2 for i in range(1, len(array)):

3 val = array[i]

4 j = i

5 while j > 0 and array[j - 1] > val:

6 array[j] = array[j - 1]

7 j -= 1

8 array[j] = val

runtime analysis (later): no fundamental difference
nevertheless: preferable if direct assignment possible

25 / 28



A3. Sorting I: Selection and Insertion Sort Insertion Sort

Properties of Insertion Sort

▶ in-place: additional storage does not depend on input size

▶ running time: adaptive for partially sorted inputs
▶ with already sorted input, immediate exit from inner loop
▶ with reversely sorted input, every element moved step-by-step

to the front

exact analysis: later

▶ stable: elements only moved to the left as long it is swapped
with a strictly larger element.
→ cannot change relative order with an equal element

26 / 28



A3. Sorting I: Selection and Insertion Sort Summary

A3.4 Summary

27 / 28



A3. Sorting I: Selection and Insertion Sort Summary

Summary

▶ selection sort and insertion sort are two simple sorting
algorithms.

▶ selection sort builds the sorted sequence from left to right by
successively swapping a minimal element from the unsorted
range to the end of the sorted range.

▶ insertion sort considers the elements from left to right and
moves them to the correct position in the already sorted range
at the beginning of the sequence.

28 / 28


	Sorting 
	

	Selection Sort
	

	Insertion Sort
	

	Summary
	


