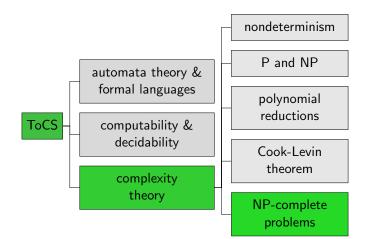
Theory of Computer Science D4. Some NP-Complete Problems, Part I

Gabriele Röger

University of Basel

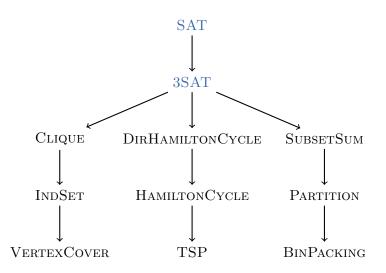
May 13, 2024

Content of the Course



Summary 00

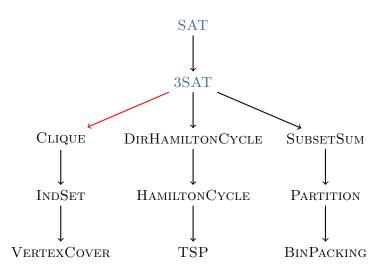
Overview of the Reductions



Summary 00

Graph Problems

$3SAT \leq_p CLIQUE$



CLIQUE

Definition (CLIQUE)

The problem **CLIQUE** is defined as follows:

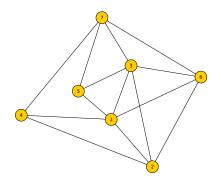
Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$

Question: Does G have a clique of size at least K, i. e., a set of vertices $C \subseteq V$ with $|C| \ge K$

and $\{u, v\} \in E$ for all $u, v \in C$ with $u \neq v$?

Summary 00

Cliques: Exercise (slido)



How many nodes has the largest clique of this graph?

Summary 00

CLIQUE is NP-Complete (1)

Theorem (CLIQUE is NP-Complete)

CLIQUE *is NP-complete*.

Summary 00

CLIQUE is NP-Complete (2)

Proof.

 $CLIQUE \in NP$: guess and check.

Summary 00

CLIQUE is NP-Complete (2)

Proof.

 $CLIQUE \in NP$: guess and check.

CLIQUE is NP-hard: We show $3SAT \leq_{p} CLIQUE$.

Proof.

 $CLIQUE \in NP$: guess and check.

CLIQUE is NP-hard: We show $3SAT \leq_p CLIQUE$.

- We are given a 3-CNF formula φ, and we may assume that each clause has exactly three literals.
- In polynomial time, we must construct
 a graph G = (V, E) and a number K such that:
 G has a clique of size at least K iff φ is satisfiable.

. . .

CLIQUE is NP-Complete (2)

Proof.

 $CLIQUE \in NP$: guess and check.

CLIQUE is NP-hard: We show $3SAT \leq_p CLIQUE$.

- We are given a 3-CNF formula φ, and we may assume that each clause has exactly three literals.
- In polynomial time, we must construct
 a graph G = (V, E) and a number K such that:
 G has a clique of size at least K iff φ is satisfiable.
- \rightsquigarrow construction of V, E, K on the following slides.

Proof (continued).

Let *m* be the number of clauses in φ .

Let ℓ_{ij} the *j*-th literal in clause *i*.

Proof (continued).

Let *m* be the number of clauses in φ . Let ℓ_{ij} the *j*-th literal in clause *i*. Define *V*, *E*, *K* as follows:

Proof (continued).

Let *m* be the number of clauses in φ .

Let ℓ_{ij} the *j*-th literal in clause *i*.

Define V, E, K as follows:

•
$$V = \{\langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3\}$$

 \rightsquigarrow a vertex for every literal of every clause

Proof (continued).

- Let *m* be the number of clauses in φ .
- Let ℓ_{ij} the *j*-th literal in clause *i*.
- Define V, E, K as follows:
 - $V = \{ \langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3 \}$
 - \rightsquigarrow a vertex for every literal of every clause
 - $\blacksquare~E$ contains edge between $\langle i,j\rangle$ and $\langle i',j'\rangle$ if and only if
 - $i \neq i' \rightsquigarrow$ belong to different clauses, and
 - ℓ_{ij} and $\ell_{i'j'}$ are not complementary literals

Proof (continued).

```
Let m be the number of clauses in \varphi.
```

Let ℓ_{ij} the *j*-th literal in clause *i*.

Define V, E, K as follows:

- $V = \{\langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3\}$
 - \rightsquigarrow a vertex for every literal of every clause
- $\blacksquare~E$ contains edge between $\langle i,j\rangle$ and $\langle i',j'\rangle$ if and only if
 - $i \neq i' \rightsquigarrow$ belong to different clauses, and
 - ℓ_{ij} and $\ell_{i'j'}$ are not complementary literals

Proof (continued).

```
Let m be the number of clauses in \varphi.
```

Let ℓ_{ij} the *j*-th literal in clause *i*.

Define V, E, K as follows:

$$V = \{ \langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3 \}$$

 \rightsquigarrow a vertex for every literal of every clause

- $\blacksquare~E$ contains edge between $\langle i,j\rangle$ and $\langle i',j'\rangle$ if and only if
 - $i \neq i' \rightsquigarrow$ belong to different clauses, and
 - ℓ_{ij} and $\ell_{i'j'}$ are not complementary literals

$$K = m$$

 \rightsquigarrow obviously polynomially computable

. . .

CLIQUE is NP-Complete (3)

Proof (continued).

```
Let m be the number of clauses in \varphi.
```

Let ℓ_{ij} the *j*-th literal in clause *i*.

Define V, E, K as follows:

$$V = \{ \langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3 \}$$

 \rightsquigarrow a vertex for every literal of every clause

- $\blacksquare~E$ contains edge between $\langle i,j\rangle$ and $\langle i',j'\rangle$ if and only if
 - $i \neq i' \rightsquigarrow$ belong to different clauses, and
 - ℓ_{ij} and $\ell_{i'j'}$ are not complementary literals

$$K = m$$

 \rightsquigarrow obviously polynomially computable

to show: reduction property

Summary 00

CLIQUE is NP-Complete (4)

Proof (continued).

(\Rightarrow) : If φ is satisfiable, then $\langle V, E \rangle$ has clique of size at least K:

. . .

CLIQUE is NP-Complete (4)

Proof (continued).

 (\Rightarrow) : If φ is satisfiable, then $\langle V, E \rangle$ has clique of size at least K:

- Given a satisfying variable assignment choose a vertex corresponding to a satisfied literal in each clause.
- The chosen K vertices are all connected with each other and hence form a clique of size K.

Summary 00

CLIQUE is NP-Complete (5)

Proof (continued).

(\Leftarrow): If $\langle V, E \rangle$ has a clique of size at least K, then φ is satisfiable:

Proof (continued).

(\Leftarrow): If $\langle V, E \rangle$ has a clique of size at least K, then φ is satisfiable:

- Consider a given clique C of size at least K.
- The vertices in C must all correspond to different clauses (vertices in the same clause are not connected by edges).
- \rightsquigarrow exactly one vertex per clause is included in C
 - Two vertices in *C* never correspond to complementary literals *X* and ¬*X* (due to the way we defined the edges).

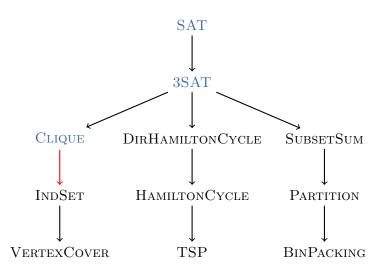
CLIQUE is NP-Complete (5)

Proof (continued).

(\Leftarrow): If $\langle V, E \rangle$ has a clique of size at least K, then φ is satisfiable:

- Consider a given clique C of size at least K.
- The vertices in C must all correspond to different clauses (vertices in the same clause are not connected by edges).
- \rightsquigarrow exactly one vertex per clause is included in C
 - Two vertices in *C* never correspond to complementary literals *X* and ¬*X* (due to the way we defined the edges).
 - If a vertex corresp. to X was chosen, map X to T (true).
 - If a vertex corresp. to $\neg X$ was chosen, map X to F (false).
 - If neither was chosen, arbitrarily map X to T or F.
- \rightsquigarrow satisfying assignment

$CLIQUE \leq_p INDSET$



INDSET

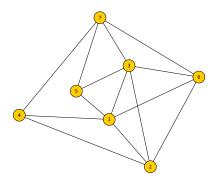
Definition (INDSET)

The problem **INDSET** is defined as follows:

Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$

Question: Does G have an independent set of size at least K, i. e., a set of vertices $I \subseteq V$ with $|I| \ge K$ and $\{u, v\} \notin E$ for all $u, v \in I$ with $u \neq v$?

Independent Set: Exercise (slido)



Does this graph have an independent set of size 3?

Summary 00

INDSET is NP-Complete (1)

Theorem (INDSET is NP-Complete)

INDSET is NP-complete.

Summary 00

. . .

INDSET is NP-Complete (1)

Theorem (INDSET is NP-Complete)

INDSET is NP-complete.

Proof.

INDSET \in NP: guess and check.

Summary 00

INDSET is NP-Complete (2)

Proof (continued).

INDSET is NP-hard: We show $CLIQUE \leq_p INDSET$.

INDSET is NP-Complete (2)

Proof (continued).

INDSET is NP-hard: We show $CLIQUE \leq_p INDSET$.

We describe a polynomial reduction f.

Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for CLIQUE.

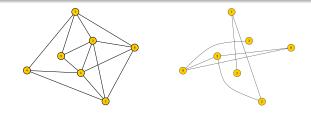
INDSET is NP-Complete (2)

Proof (continued).

INDSET is NP-hard: We show $CLIQUE \leq_p INDSET$.

We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for CLIQUE. Then $f(\langle G, K \rangle)$ is the INDSET instance $\langle \overline{G}, K \rangle$, where $\overline{G} := \langle V, \overline{E} \rangle$ and $\overline{E} := \{\{u, v\} \subseteq V \mid u \neq v, \{u, v\} \notin E\}$.

(This graph \overline{G} is called the complement graph of G.)



. . .

INDSET is NP-Complete (2)

Proof (continued).

INDSET is NP-hard: We show $CLIQUE \leq_p INDSET$.

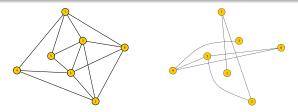
We describe a polynomial reduction f.

Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for CLIQUE.

Then $f(\langle G, K \rangle)$ is the INDSET instance $\langle \overline{G}, K \rangle$, where $\overline{G} := \langle V, \overline{E} \rangle$ and $\overline{E} := \{\{u, v\} \subseteq V \mid u \neq v, \{u, v\} \notin E\}$.

(This graph \overline{G} is called the complement graph of G.)

Clearly f can be computed in polynomial time.



INDSET is NP-Complete (3)

Proof (continued).

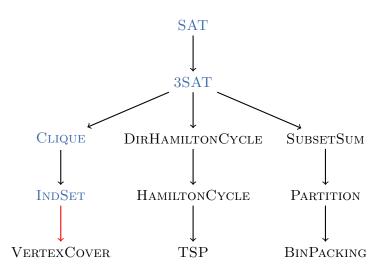
We have:

 $\begin{array}{ll} \langle \langle V, E \rangle, K \rangle \in \mathrm{CLIQUE} \\ \text{iff} & \text{there exists a set } V' \subseteq V \text{ with } |V'| \geq K \\ & \text{and } \{u, v\} \in E \text{ for all } u, v \in V' \text{ with } u \neq v \\ \text{iff} & \text{there exists a set } V' \subseteq V \text{ with } |V'| \geq K \\ & \text{and } \{u, v\} \notin \overline{E} \text{ for all } u, v \in V' \text{ with } u \neq v \\ \text{iff} & \langle \langle V, \overline{E} \rangle, K \rangle \in \mathrm{INDSET} \\ \text{iff} & f(\langle \langle V, E \rangle, K \rangle) \in \mathrm{INDSET} \end{array}$

and hence f is a reduction.

Summary 00

$INDSET \leq_p VERTEXCOVER$



VERTEXCOVER

Definition (VERTEXCOVER)

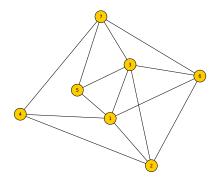
The problem **VERTEXCOVER** is defined as follows:

Given: undirected graph $G = \langle V, E \rangle$, number $K \in \mathbb{N}_0$

Question: Does G have a vertex cover of size at most K, i. e., a set of vertices $C \subseteq V$ with $|C| \leq K$ and $\{u, v\} \cap C \neq \emptyset$ for all $\{u, v\} \in E$?

Summary 00

Vertex Cover: Exercise (slido)



Does this graph have a vertex cover of size 4?

Summary 00

VERTEXCOVER is NP-Complete (1)

Theorem (VERTEXCOVER is NP-Complete)

VERTEXCOVER is NP-complete.

Summary 00

VERTEXCOVER is NP-Complete (2)

Proof.

 $VERTEXCOVER \in NP$: guess and check.

Summary 00

VERTEXCOVER is NP-Complete (2)

Proof.

 $VERTEXCOVER \in NP$: guess and check.

VERTEXCOVER is NP-hard: We show INDSET \leq_p VERTEXCOVER.

VERTEXCOVER is NP-Complete (2)

Proof.

 $VERTEXCOVER \in NP$: guess and check.

VERTEXCOVER is NP-hard: We show INDSET \leq_p VERTEXCOVER. We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for INDSET.

. . .

VERTEXCOVER is NP-Complete (2)

Proof.

 $VERTEXCOVER \in NP$: guess and check.

VERTEXCOVER is NP-hard: We show INDSET \leq_p VERTEXCOVER.

We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for INDSET. Then $f(\langle G, K \rangle) := \langle G, |V| - K \rangle$. This can clearly be computed in polynomial time.

VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set $V' \subseteq V$, we write $\overline{V'}$ for its complement $V \setminus V'$.

VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set $V' \subseteq V$, we write $\overline{V'}$ for its complement $V \setminus V'$.

Observation: a set of vertices is a vertex cover iff its complement is an independent set.

VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set $V' \subseteq V$, we write $\overline{V'}$ for its complement $V \setminus V'$.

Observation: a set of vertices is a vertex cover iff its complement is an independent set.

We thus have:

 $\begin{array}{ll} \langle \langle V, E \rangle, K \rangle \in \text{INDSET} \\ \text{iff} & \langle V, E \rangle \text{ has an independent set } I \text{ with } |I| \geq K \\ \text{iff} & \langle V, E \rangle \text{ has a vertex cover } C \text{ with } |\overline{C}| \geq K \\ \text{iff} & \langle V, E \rangle \text{ has a vertex cover } C \text{ with } |C| \leq |V| - K \\ \text{iff} & \langle \langle V, E \rangle, |V| - K \rangle \in \text{VERTEXCOVER} \\ \text{iff} & f(\langle \langle V, E \rangle, K \rangle) \in \text{VERTEXCOVER} \end{array}$

and hence f is a reduction.

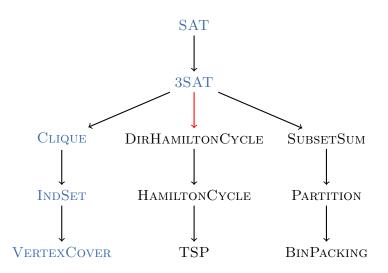
Graph Problems

Questions

Routing Problems 0000000000000<u>0000</u> Summary 00

Questions?

$3SAT \leq_p DIRHAMILTONCYCLE$



DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE)

The problem **DIRHAMILTONCYCLE** is defined as follows:

Given: directed graph $G = \langle V, E \rangle$

Question: Does G contain a Hamilton cycle?

DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE)

The problem **DIRHAMILTONCYCLE** is defined as follows:

Given: directed graph $G = \langle V, E \rangle$

Question: Does G contain a Hamilton cycle?

Theorem

DIRHAMILTONCYCLE *is NP-complete*.

Summary 00

DIRHAMILTONCYCLE is NP-Complete (2)

Proof.

 $DIRHAMILTONCYCLE \in NP$: guess and check.

DIRHAMILTONCYCLE is NP-Complete (2)

Proof.

DIRHAMILTONCYCLE \in NP: guess and check.

DIRHAMILTONCYCLE is NP-hard: We show $3SAT \leq_p DIRHAMILTONCYCLE$.

. . .

DIRHAMILTONCYCLE is NP-Complete (2)

Proof.

DIRHAMILTONCYCLE \in NP: guess and check.

DIRHAMILTONCYCLE is NP-hard:

We show $3SAT \leq_p DIRHAMILTONCYCLE$.

- We are given a 3-CNF formula φ where each clause contains exactly three literals and no clause contains duplicated literals.
- We must, in polynomial time, construct
 a directed graph G = (V, E) such that:
 G contains a Hamilton cycle iff φ is satisfiable.
- construction of $\langle V, E \rangle$ on the following slides

. . .

DIRHAMILTONCYCLE is NP-Complete (3)

Proof (continued).

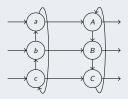
- Let X_1, \ldots, X_n be the atomic propositions in φ .
- Let c_1, \ldots, c_m be the clauses of φ with $c_i = (\ell_{i1} \lor \ell_{i2} \lor \ell_{i3})$.
- Construct a graph with 6m + n vertices (described on the following slides).

DIRHAMILTONCYCLE is NP-Complete (4)

Proof (continued).

For every variable X_i, add vertex x_i with 2 incoming and 2 outgoing edges:

For every clause c_j , add the subgraph C_j with 6 vertices:



• We describe later how to connect these parts.

DIRHAMILTONCYCLE is NP-Complete (5)

Proof (continued).

Let π be a Hamilton cycle of the total graph.

- Whenever π enters subgraph C_j from one of its "entrances", it must leave via the corresponding "exit":
 (a → A, b → B, c → C).
 Otherwise, π cannot be a Hamilton cycle.
- Hamilton cycles can behave in the following ways with regard to C_i:
 - π passes through C_j once (from any entrance)
 - π passes through C_j twice (from any two entrances)
 - π passes through C_j three times (once from every entrance)

. . .

. . .

DIRHAMILTONCYCLE is NP-Complete (6)

Proof (continued).

Connect the "open ends" in the graph as follows:

- Identify entrances/exits of the clause subgraph C_j with the three literals in clause c_j.
- One exit of x_i is positive, the other one is negative.
- For the positive exit, determine the clauses in which the positive literal X_i occurs:
 - Connect the positive exit of x_i with the X_i-entrance of the first such clause graph.
 - Connect the X_i-exit of this clause graph with the X_i-entrance of the second such clause graph, and so on.
 - Connect the X_i -exit of the last such clause graph with the positive entrance of x_{i+1} (or x_1 if i = n).

• analogously for the negative exit of x_i and the literal $\neg X_i$

. . .

DIRHAMILTONCYCLE is NP-Complete (7)

Proof (continued).

The construction is polynomial and is a reduction:

 (\Rightarrow) : construct a Hamilton cycle from a satisfying assignment

- Given a satisfying assignment *I*, construct a Hamilton cycle that leaves x_i through the positive exit if *I*(X_i) is true and by the negative exit if *I*(X_i) is false.
- Afterwards, we visit all C_j-subgraphs for clauses that are satisfied by this literal.
- In total, we visit each C_j -subgraph 1–3 times.

DIRHAMILTONCYCLE is NP-Complete (8)

Proof (continued).

 (\Leftarrow) : construct a satisfying assignment from a Hamilton cycle

- A Hamilton cycle visits every vertex x_i and leaves it by the positive or negative exit.
- Map X_i to true or false depending on which exit is used to leave x_i.
- Because the cycle must traverse each C_j-subgraph at least once (otherwise it is not a Hamilton cycle), this results in a satisfying assignment. (Details omitted.)

$DIRHAMILTONCYCLE \leq_p HAMILTONCYCLE$



HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE)

The problem **HAMILTONCYCLE** is defined as follows:

Given: undirected graph $G = \langle V, E \rangle$

Question: Does G contain a Hamilton cycle?

HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE)

The problem **HAMILTONCYCLE** is defined as follows:

Given: undirected graph $G = \langle V, E \rangle$

Question: Does G contain a Hamilton cycle?

Theorem

HAMILTONCYCLE *is NP-complete*.

Summary 00

HAMILTONCYCLE is NP-Complete (2)

Proof sketch.

HAMILTONCYCLE \in NP: guess and check.

Summary 00

HAMILTONCYCLE is NP-Complete (2)

Proof sketch.

HAMILTONCYCLE \in NP: guess and check.

HAMILTONCYCLE is NP-hard: We show DIRHAMILTONCYCLE \leq_p HAMILTONCYCLE.

HAMILTONCYCLE is NP-Complete (2)

Proof sketch.

HAMILTONCYCLE $\in \mathsf{NP}$: guess and check.

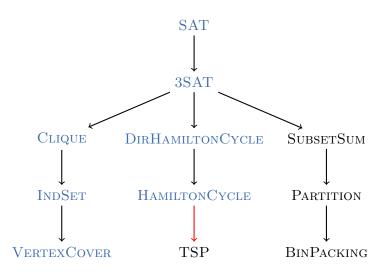
HAMILTONCYCLE is NP-hard: We show DIRHAMILTONCYCLE \leq_p HAMILTONCYCLE.

Basic building block of the reduction:

$$\xrightarrow{} v \xrightarrow{} \qquad \Longrightarrow \qquad \xrightarrow{} v_1 \xrightarrow{} v_2 \xrightarrow{} v_3 \xrightarrow{}$$

Summary 00

HAMILTONCYCLE \leq_{p} TSP



TSP is NP-Complete (1)

Definition (Reminder: TSP)

 TSP (traveling salesperson problem) is the following decision problem:

- Given: finite set $S \neq \emptyset$ of cities, symmetric cost function $cost: S \times S \rightarrow \mathbb{N}_0$, cost bound $K \in \mathbb{N}_0$
- Question: Is there a tour with total cost at most K, i.e., a permutation $\langle s_1, \ldots, s_n \rangle$ of the cities with $\sum_{i=1}^{n-1} cost(s_i, s_{i+1}) + cost(s_n, s_1) \le K$?

Theorem

TSP is NP-complete.

Summary 00

TSP is NP-Complete (2)

Proof.

 $TSP \in NP$: guess and check.

TSP is NP-hard: We showed HAMILTONCYCLE $\leq_p \mathrm{TSP}$ in Chapter D2.

Questions

Routing Problems

Summary 00

Questions?

Summary

In this chapter we showed NP-completeness of

- three classical graph problems: CLIQUE, INDSET, VERTEXCOVER
- three classical routing problems: DIRHAMILTONCYCLE, HAMILTONCYCLE, TSP