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Clique

Definition (Clique)

The problem Clique is defined as follows:

Given: undirected graph G = ⟨V ,E ⟩, number K ∈ N0

Question: Does G have a clique of size at least K ,
i. e., a set of vertices C ⊆ V with |C | ≥ K
and {u, v} ∈ E for all u, v ∈ C with u ̸= v?



Graph Problems Routing Problems Summary

Cliques: Exercise (slido)

How many nodes has the largest clique of this graph?
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Clique is NP-Complete (1)

Theorem (Clique is NP-Complete)

Clique is NP-complete.
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Clique is NP-Complete (2)

Proof.

Clique ∈ NP: guess and check.

Clique is NP-hard: We show 3SAT ≤p Clique.

We are given a 3-CNF formula φ, and we may assume
that each clause has exactly three literals.

In polynomial time, we must construct
a graph G = ⟨V ,E ⟩ and a number K such that:
G has a clique of size at least K iff φ is satisfiable.

⇝ construction of V ,E ,K on the following slides.

. . .
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Clique is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in φ.

Let ℓij the j-th literal in clause i .

Define V , E , K as follows:

V = {⟨i , j⟩ | 1 ≤ i ≤ m, 1 ≤ j ≤ 3}
⇝ a vertex for every literal of every clause

E contains edge between ⟨i , j⟩ and ⟨i ′, j ′⟩ if and only if

i ̸= i ′ ⇝ belong to different clauses, and
ℓij and ℓi ′j′ are not complementary literals

K = m

⇝ obviously polynomially computable

to show: reduction property . . .
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Clique is NP-Complete (4)

Proof (continued).

(⇒): If φ is satisfiable, then ⟨V ,E ⟩ has clique of size at least K :

Given a satisfying variable assignment choose a vertex
corresponding to a satisfied literal in each clause.

The chosen K vertices are all connected with each other
and hence form a clique of size K .

. . .
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Clique is NP-Complete (5)

Proof (continued).

(⇐): If ⟨V ,E ⟩ has a clique of size at least K , then φ is satisfiable:

Consider a given clique C of size at least K .

The vertices in C must all correspond to different clauses
(vertices in the same clause are not connected by edges).

⇝ exactly one vertex per clause is included in C

Two vertices in C never correspond to complementary literals
X and ¬X (due to the way we defined the edges).

If a vertex corresp. to X was chosen, map X to T (true).

If a vertex corresp. to ¬X was chosen, map X to F (false).

If neither was chosen, arbitrarily map X to T or F.

⇝ satisfying assignment
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IndSet

Definition (IndSet)

The problem IndSet is defined as follows:

Given: undirected graph G = ⟨V ,E ⟩, number K ∈ N0

Question: Does G have an independent set of size at least K ,
i. e., a set of vertices I ⊆ V with |I | ≥ K
and {u, v} /∈ E for all u, v ∈ I with u ̸= v?
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Independent Set: Exercise (slido)

Does this graph have an independent set of size 3?
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IndSet is NP-Complete (1)

Theorem (IndSet is NP-Complete)

IndSet is NP-complete.

Proof.

IndSet ∈ NP: guess and check. . . .
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IndSet is NP-Complete (2)

Proof (continued).

IndSet is NP-hard: We show Clique ≤p IndSet.

We describe a polynomial reduction f .
Let ⟨G ,K ⟩ with G = ⟨V ,E ⟩ be the given input for Clique.

Then f (⟨G ,K ⟩) is the IndSet instance ⟨G ,K ⟩, where
G := ⟨V ,E ⟩ and E := {{u, v} ⊆ V | u ̸= v , {u, v} /∈ E}.
(This graph G is called the complement graph of G .)

Clearly f can be computed in polynomial time. . . .



Graph Problems Routing Problems Summary

IndSet is NP-Complete (2)

Proof (continued).

IndSet is NP-hard: We show Clique ≤p IndSet.

We describe a polynomial reduction f .
Let ⟨G ,K ⟩ with G = ⟨V ,E ⟩ be the given input for Clique.

Then f (⟨G ,K ⟩) is the IndSet instance ⟨G ,K ⟩, where
G := ⟨V ,E ⟩ and E := {{u, v} ⊆ V | u ̸= v , {u, v} /∈ E}.
(This graph G is called the complement graph of G .)

Clearly f can be computed in polynomial time. . . .



Graph Problems Routing Problems Summary

IndSet is NP-Complete (2)

Proof (continued).

IndSet is NP-hard: We show Clique ≤p IndSet.

We describe a polynomial reduction f .
Let ⟨G ,K ⟩ with G = ⟨V ,E ⟩ be the given input for Clique.

Then f (⟨G ,K ⟩) is the IndSet instance ⟨G ,K ⟩, where
G := ⟨V ,E ⟩ and E := {{u, v} ⊆ V | u ̸= v , {u, v} /∈ E}.
(This graph G is called the complement graph of G .)

Clearly f can be computed in polynomial time. . . .



Graph Problems Routing Problems Summary

IndSet is NP-Complete (2)

Proof (continued).
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IndSet is NP-Complete (3)

Proof (continued).

We have:

⟨⟨V ,E ⟩,K ⟩ ∈ Clique

iff there exists a set V ′ ⊆ V with |V ′| ≥ K

and {u, v} ∈ E for all u, v ∈ V ′ with u ̸= v

iff there exists a set V ′ ⊆ V with |V ′| ≥ K

and {u, v} /∈ E for all u, v ∈ V ′ with u ̸= v

iff ⟨⟨V ,E ⟩,K ⟩ ∈ IndSet

iff f (⟨⟨V ,E ⟩,K ⟩) ∈ IndSet

and hence f is a reduction.
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VertexCover

Definition (VertexCover)

The problem VertexCover is defined as follows:

Given: undirected graph G = ⟨V ,E ⟩, number K ∈ N0

Question: Does G have a vertex cover of size at most K ,
i. e., a set of vertices C ⊆ V with |C | ≤ K and {u, v} ∩ C ̸= ∅
for all {u, v} ∈ E?
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Vertex Cover: Exercise (slido)

Does this graph have a vertex cover of size 4?
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VertexCover is NP-Complete (1)

Theorem (VertexCover is NP-Complete)

VertexCover is NP-complete.
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VertexCover is NP-Complete (2)

Proof.

VertexCover ∈ NP: guess and check.

VertexCover is NP-hard:
We show IndSet ≤p VertexCover.

We describe a polynomial reduction f .
Let ⟨G ,K ⟩ with G = ⟨V ,E ⟩ be the given input for IndSet.

Then f (⟨G ,K ⟩) := ⟨G , |V | − K ⟩.
This can clearly be computed in polynomial time. . . .
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VertexCover is NP-Complete (3)

Proof (continued).

For vertex set V ′ ⊆ V , we write V ′ for its complement V \ V ′.

Observation: a set of vertices is a vertex cover
iff its complement is an independent set.

We thus have:

⟨⟨V ,E ⟩,K ⟩ ∈ IndSet

iff ⟨V ,E ⟩ has an independent set I with |I | ≥ K

iff ⟨V ,E ⟩ has a vertex cover C with |C | ≥ K

iff ⟨V ,E ⟩ has a vertex cover C with |C | ≤ |V | − K

iff ⟨⟨V ,E ⟩, |V | − K ⟩ ∈ VertexCover

iff f (⟨⟨V ,E ⟩,K ⟩) ∈ VertexCover

and hence f is a reduction.
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DirHamiltonCycle is NP-Complete (1)

Definition (Reminder: DirHamiltonCycle)

The problem DirHamiltonCycle is defined as follows:

Given: directed graph G = ⟨V ,E ⟩
Question: Does G contain a Hamilton cycle?

Theorem

DirHamiltonCycle is NP-complete.
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Definition (Reminder: DirHamiltonCycle)

The problem DirHamiltonCycle is defined as follows:

Given: directed graph G = ⟨V ,E ⟩
Question: Does G contain a Hamilton cycle?

Theorem

DirHamiltonCycle is NP-complete.
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DirHamiltonCycle is NP-Complete (2)

Proof.

DirHamiltonCycle ∈ NP: guess and check.

DirHamiltonCycle is NP-hard:
We show 3SAT ≤p DirHamiltonCycle.

We are given a 3-CNF formula φ where each clause contains
exactly three literals and no clause contains duplicated literals.

We must, in polynomial time, construct
a directed graph G = ⟨V ,E ⟩ such that:
G contains a Hamilton cycle iff φ is satisfiable.

construction of ⟨V ,E ⟩ on the following slides

. . .
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DirHamiltonCycle is NP-Complete (3)

Proof (continued).

Let X1, . . . ,Xn be the atomic propositions in φ.

Let c1, . . . , cm be the clauses of φ with ci = (ℓi1 ∨ ℓi2 ∨ ℓi3).

Construct a graph with 6m + n vertices
(described on the following slides).

. . .
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DirHamiltonCycle is NP-Complete (4)

Proof (continued).

For every variable Xi , add vertex xi
with 2 incoming and 2 outgoing edges:

x1 x2 . . . xn

For every clause cj , add the subgraph Cj with 6 vertices:

a

b

c

A

B

C

We describe later how to connect these parts.

. . .
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DirHamiltonCycle is NP-Complete (5)

Proof (continued).

Let π be a Hamilton cycle of the total graph.

Whenever π enters subgraph Cj from one of its “entrances”,
it must leave via the corresponding “exit”:
(a −→ A, b −→ B, c −→ C ).
Otherwise, π cannot be a Hamilton cycle.

Hamilton cycles can behave in the following ways
with regard to Cj :

π passes through Cj once (from any entrance)
π passes through Cj twice (from any two entrances)
π passes through Cj three times (once from every entrance)

. . .
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DirHamiltonCycle is NP-Complete (6)

Proof (continued).

Connect the “open ends” in the graph as follows:

Identify entrances/exits of the clause subgraph Cj

with the three literals in clause cj .

One exit of xi is positive, the other one is negative.

For the positive exit, determine the clauses
in which the positive literal Xi occurs:

Connect the positive exit of xi with the Xi -entrance
of the first such clause graph.
Connect the Xi -exit of this clause graph with the Xi -entrance
of the second such clause graph, and so on.
Connect the Xi -exit of the last such clause graph
with the positive entrance of xi+1 (or x1 if i = n).

analogously for the negative exit of xi and the literal ¬Xi

. . .



Graph Problems Routing Problems Summary

DirHamiltonCycle is NP-Complete (7)

Proof (continued).

The construction is polynomial and is a reduction:

(⇒): construct a Hamilton cycle from a satisfying assignment

Given a satisfying assignment I, construct a Hamilton cycle
that leaves xi through the positive exit if I(Xi ) is true
and by the negative exit if I(Xi ) is false.

Afterwards, we visit all Cj -subgraphs for clauses
that are satisfied by this literal.

In total, we visit each Cj -subgraph 1–3 times.

. . .
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DirHamiltonCycle is NP-Complete (8)

Proof (continued).

(⇐): construct a satisfying assignment from a Hamilton cycle

A Hamilton cycle visits every vertex xi
and leaves it by the positive or negative exit.

Map Xi to true or false depending on which exit
is used to leave xi .

Because the cycle must traverse each Cj -subgraph
at least once (otherwise it is not a Hamilton cycle),
this results in a satisfying assignment. (Details omitted.)
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HamiltonCycle is NP-Complete (1)

Definition (Reminder: HamiltonCycle)

The problem HamiltonCycle is defined as follows:

Given: undirected graph G = ⟨V ,E ⟩
Question: Does G contain a Hamilton cycle?

Theorem

HamiltonCycle is NP-complete.
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HamiltonCycle is NP-Complete (2)

Proof sketch.

HamiltonCycle ∈ NP: guess and check.

HamiltonCycle is NP-hard: We show
DirHamiltonCycle ≤p HamiltonCycle.

Basic building block of the reduction:

v =⇒ v1 v2 v3
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SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking
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TSP is NP-Complete (1)

Definition (Reminder: TSP)

TSP (traveling salesperson problem) is the following
decision problem:

Given: finite set S ̸= ∅ of cities, symmetric cost function
cost : S × S → N0, cost bound K ∈ N0

Question: Is there a tour with total cost at most K , i. e.,
a permutation ⟨s1, . . . , sn⟩ of the cities with∑n−1

i=1 cost(si , si+1) + cost(sn, s1) ≤ K?

Theorem

TSP is NP-complete.
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TSP is NP-Complete (2)

Proof.

TSP ∈ NP: guess and check.

TSP is NP-hard: We showed HamiltonCycle ≤p TSP
in Chapter D2.
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Summary

In this chapter we showed NP-completeness of

three classical graph problems:
Clique, IndSet, VertexCover
three classical routing problems:
DirHamiltonCycle, HamiltonCycle, TSP
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