Theory of Computer Science D4. Some NP-Complete Problems, Part I

Gabriele Röger
University of Basel

May 13, 2024

Theory of Computer Science

May 13, 2024 - D4. Some NP-Complete Problems, Part I

D4.1 Graph Problems

D4.2 Routing Problems

Content of the Course

D4.1 Graph Problems

$3 S A T \leq_{p}$ CLique

Clique

Definition (Clique)

The problem Clique is defined as follows:
Given: undirected graph $G=\langle V, E\rangle$, number $K \in \mathbb{N}_{0}$
Question: Does G have a clique of size at least K, i. e., a set of vertices $C \subseteq V$ with $|C| \geq K$ and $\{u, v\} \in E$ for all $u, v \in C$ with $u \neq v$?

Cliques: Exercise (slido)

How many nodes has the largest clique of this graph?

Clique is NP-Complete (1)

Theorem (Clique is NP-Complete)
Clique is NP-complete.

Clique is NP-Complete (2)

Proof.

Clique \in NP: guess and check.
Clique is NP-hard: We show 3 SAT \leq_{p} Clique.

- We are given a 3-CNF formula φ, and we may assume that each clause has exactly three literals.
- In polynomial time, we must construct
a graph $G=\langle V, E\rangle$ and a number K such that:
G has a clique of size at least K iff φ is satisfiable.
\rightsquigarrow construction of V, E, K on the following slides.

Clique is NP-Complete (3)

Proof (continued).

Let m be the number of clauses in φ.
Let $\ell_{i j}$ the j-th literal in clause i.
Define V, E, K as follows:

- $V=\{\langle i, j\rangle \mid 1 \leq i \leq m, 1 \leq j \leq 3\}$
\rightsquigarrow a vertex for every literal of every clause
- E contains edge between $\langle i, j\rangle$ and $\left\langle i^{\prime}, j^{\prime}\right\rangle$ if and only if
- $i \neq i^{\prime} \rightsquigarrow$ belong to different clauses, and
- $\ell_{i j}$ and $\ell_{i^{\prime} j^{\prime}}$ are not complementary literals
- $K=m$
\rightsquigarrow obviously polynomially computable
to show: reduction property

Clique is NP-Complete (4)

Proof (continued).
(\Rightarrow) : If φ is satisfiable, then $\langle V, E\rangle$ has clique of size at least K :

- Given a satisfying variable assignment choose a vertex corresponding to a satisfied literal in each clause.
- The chosen K vertices are all connected with each other and hence form a clique of size K.

Clique is NP-Complete (5)

Proof (continued).
(\Leftarrow) : If $\langle V, E\rangle$ has a clique of size at least K, then φ is satisfiable:

- Consider a given clique C of size at least K.
- The vertices in C must all correspond to different clauses (vertices in the same clause are not connected by edges).
\rightsquigarrow exactly one vertex per clause is included in C
- Two vertices in C never correspond to complementary literals X and $\neg X$ (due to the way we defined the edges).
- If a vertex corresp. to X was chosen, map X to T (true).
- If a vertex corresp. to $\neg X$ was chosen, map X to F (false).
- If neither was chosen, arbitrarily map X to T or F.
\rightsquigarrow satisfying assignment

Clique \leq_{p} IndSet

IndSET

Definition (IndSet)

The problem IndSet is defined as follows:
Given: undirected graph $G=\langle V, E\rangle$, number $K \in \mathbb{N}_{0}$
Question: Does G have an independent set of size at least K, i. e., a set of vertices $I \subseteq V$ with $|I| \geq K$ and $\{u, v\} \notin E$ for all $u, v \in I$ with $u \neq v$?

Independent Set: Exercise (slido)

Does this graph have an independent set of size 3 ?

IndSET is NP-Complete (1)

Theorem (IndSET is NP-Complete) IndSET is NP-complete.

Proof.
IndSet \in NP: guess and check.

IndSET is NP-Complete (2)

Proof (continued).

IndSet is NP-hard: We show Clique \leq_{p} IndSet.
We describe a polynomial reduction f.
Let $\langle G, K\rangle$ with $G=\langle V, E\rangle$ be the given input for Clique.
Then $f(\langle G, K\rangle)$ is the IndSet instance $\langle\bar{G}, K\rangle$, where $\bar{G}:=\langle V, \bar{E}\rangle$ and $\bar{E}:=\{\{u, v\} \subseteq V \mid u \neq v,\{u, v\} \notin E\}$.
(This graph \bar{G} is called the complement graph of G.)
Clearly f can be computed in polynomial time.

IndSET is NP-Complete (3)

Proof (continued).

We have:

$$
\langle\langle V, E\rangle, K\rangle \in \mathrm{Clique}
$$

iff there exists a set $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \geq K$ and $\{u, v\} \in E$ for all $u, v \in V^{\prime}$ with $u \neq v$
iff there exists a set $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \geq K$ and $\{u, v\} \notin \bar{E}$ for all $u, v \in V^{\prime}$ with $u \neq v$
iff $\langle\langle V, \bar{E}\rangle, K\rangle \in \operatorname{IndSet}$
iff $f(\langle\langle V, E\rangle, K\rangle) \in \operatorname{IndSet}$
and hence f is a reduction.

IndSET \leq_{p} VertexCover

VertexCover

Definition (VertexCover)

The problem VertexCover is defined as follows:
Given: undirected graph $G=\langle V, E\rangle$, number $K \in \mathbb{N}_{0}$
Question: Does G have a vertex cover of size at most K, i. e., a set of vertices $C \subseteq V$ with $|C| \leq K$ and $\{u, v\} \cap C \neq \emptyset$ for all $\{u, v\} \in E$?

Vertex Cover: Exercise (slido)

Does this graph have a vertex cover of size 4?

VertexCover is NP-Complete (1)

Theorem (VertexCover is NP-Complete) VertexCover is NP-complete.

VertexCover is NP-Complete (2)

Proof.

VertexCover \in NP: guess and check.
VertexCover is NP-hard:
We show IndSet \leq_{p} VertexCover.
We describe a polynomial reduction f.
Let $\langle G, K\rangle$ with $G=\langle V, E\rangle$ be the given input for IndSet.
Then $f(\langle G, K\rangle):=\langle G| V,|-K\rangle$.
This can clearly be computed in polynomial time.

VertexCover is NP-Complete (3)

Proof (continued).

For vertex set $V^{\prime} \subseteq V$, we write $\overline{V^{\prime}}$ for its complement $V \backslash V^{\prime}$.
Observation: a set of vertices is a vertex cover iff its complement is an independent set.
We thus have:

$$
\begin{array}{ll}
& \langle\langle V, E\rangle, K\rangle \in \text { IndSET } \\
\text { iff } & \langle V, E\rangle \text { has an independent set } I \text { with }|I| \geq K \\
\text { iff } & \langle V, E\rangle \text { has a vertex cover } C \text { with }|\bar{C}| \geq K \\
\text { iff } & \langle V, E\rangle \text { has a vertex cover } C \text { with }|C| \leq|V|-K \\
\text { iff } & \langle\langle V, E\rangle,| V|-K\rangle \in \text { VERTEXCover } \\
\text { iff } & f(\langle\langle V, E\rangle, K\rangle) \in \text { VERTEXCOVER }
\end{array}
$$

D4.2 Routing Problems

3 SAT \leq_{p} DirHamiltonCycle

DirHamiltonCycle is NP-Complete (1)

Definition (Reminder: DirHamiltonCycle)
The problem DirHamiltonCycle is defined as follows:
Given: directed graph $G=\langle V, E\rangle$
Question: Does G contain a Hamilton cycle?
Theorem
DirHamiltonCycle is NP-complete.

DirHamiltonCycle is NP-Complete (2)

Proof.DirHamiltonCycle \in NP: guess and check.DirHamiltonCycle is NP-hard:We show 3 SAT \leq_{p} DirHamiltonCycle.

- We are given a 3-CNF formula φ where each clause contains exactly three literals and no clause contains duplicated literals.
- We must, in polynomial time, construct a directed graph $G=\langle V, E\rangle$ such that: G contains a Hamilton cycle iff φ is satisfiable.
- construction of $\langle V, E\rangle$ on the following slides

DirHamiltonCycle is NP-Complete (3)

Proof (continued).

- Let X_{1}, \ldots, X_{n} be the atomic propositions in φ.
- Let c_{1}, \ldots, c_{m} be the clauses of φ with $c_{i}=\left(\ell_{i 1} \vee \ell_{i 2} \vee \ell_{i 3}\right)$.
- Construct a graph with $6 m+n$ vertices (described on the following slides).

DirHamiltonCycle is NP-Complete (4)

Proof (continued).

- For every variable X_{i}, add vertex x_{i} with 2 incoming and 2 outgoing edges:

- For every clause c_{j}, add the subgraph C_{j} with 6 vertices:

- We describe later how to connect these parts.

DirHamiltonCycle is NP-Complete (5)

Proof (continued).

Let π be a Hamilton cycle of the total graph.

- Whenever π enters subgraph C_{j} from one of its "entrances", it must leave via the corresponding "exit":
$(a \longrightarrow A, b \longrightarrow B, c \longrightarrow C)$.
Otherwise, π cannot be a Hamilton cycle.
- Hamilton cycles can behave in the following ways with regard to C_{j} :
- π passes through C_{j} once (from any entrance)
- π passes through C_{j} twice (from any two entrances)
- π passes through C_{j} three times (once from every entrance)

DirHamiltonCycle is NP-Complete (6)

Proof (continued).

Connect the "open ends" in the graph as follows:

- Identify entrances/exits of the clause subgraph C_{j} with the three literals in clause c_{j}.
- One exit of x_{i} is positive, the other one is negative.
- For the positive exit, determine the clauses in which the positive literal X_{i} occurs:
- Connect the positive exit of x_{i} with the X_{i}-entrance of the first such clause graph.
- Connect the X_{i}-exit of this clause graph with the X_{i}-entrance of the second such clause graph, and so on.
- Connect the X_{i}-exit of the last such clause graph with the positive entrance of x_{i+1} (or x_{1} if $i=n$).
- analogously for the negative exit of x_{i} and the literal $\neg X_{i}$

DirHamiltonCycle is NP-Complete (7)

Proof (continued).

The construction is polynomial and is a reduction:
(\Rightarrow) : construct a Hamilton cycle from a satisfying assignment

- Given a satisfying assignment \mathcal{I}, construct a Hamilton cycle that leaves x_{i} through the positive exit if $\mathcal{I}\left(X_{i}\right)$ is true and by the negative exit if $\mathcal{I}\left(X_{i}\right)$ is false.
- Afterwards, we visit all C_{j}-subgraphs for clauses that are satisfied by this literal.
- In total, we visit each C_{j}-subgraph 1-3 times.

DirHamiltonCycle is NP-Complete (8)

Proof (continued).
(\Leftarrow) : construct a satisfying assignment from a Hamilton cycle

- A Hamilton cycle visits every vertex x_{i} and leaves it by the positive or negative exit.
- Map X_{i} to true or false depending on which exit is used to leave x_{i}.
- Because the cycle must traverse each C_{j}-subgraph at least once (otherwise it is not a Hamilton cycle), this results in a satisfying assignment. (Details omitted.)

DirHamiltonCycle $\leq{ }_{p}$ HamiltonCycle

HamiltonCycle is NP-Complete (1)

Definition (Reminder: HamiltonCycle)
The problem HamiltonCycle is defined as follows:
Given: undirected graph $G=\langle V, E\rangle$
Question: Does G contain a Hamilton cycle?
Theorem
HamiltonCycle is NP-complete.

HamiltonCycle is NP-Complete (2)

Proof sketch.

HamiltonCycle \in NP: guess and check.
HamiltonCycle is NP-hard: We show
DirHamiltonCycle \leq_{p} HamiltonCycle.
Basic building block of the reduction:

HamiltonCycle \leq_{p} TSP

TSP is NP-Complete (1)

Definition (Reminder: TSP)

TSP (traveling salesperson problem) is the following decision problem:

- Given: finite set $S \neq \emptyset$ of cities, symmetric cost function cost : $S \times S \rightarrow \mathbb{N}_{0}$, cost bound $K \in \mathbb{N}_{0}$
- Question: Is there a tour with total cost at most K, i.e., a permutation $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ of the cities with $\sum_{i=1}^{n-1} \operatorname{cost}\left(s_{i}, s_{i+1}\right)+\operatorname{cost}\left(s_{n}, s_{1}\right) \leq K ?$

Theorem
 TSP is NP-complete.

TSP is NP-Complete (2)

> Proof. TSP \in NP: guess and check. TSP is NP-hard: We showed HamiltonCycle \leq_{p} TSP in Chapter D2.

Summary

- In this chapter we showed NP-completeness of
- three classical graph problems: Clique, IndSet, VertexCover
- three classical routing problems:

DirHamiltonCycle, HamiltonCycle, TSP

