Theory of Computer Science
D3. Proving NP-Completeness

Gabriele Röger
University of Basel
May 8, 2024

Theory of Computer Science
May 8, 2024 - D3. Proving NP-Completeness

D3.1 Overview

D3.2 Propositional Logic
D3.3 Cook-Levin Theorem
D3.4 3SAT
D3.5 Summary

D3. Proving NP-Completeness Reminder: P and NP
\qquadP: class of languages that are decidable in polynomial time by a deterministic Turing machine (class of languages that are decidable in polynomial time by a non-deterministic Turing machine
Gabriele Röger (University of Basel)

Definition (Polynomial Reduction)
Let $A \subseteq \Sigma^{*}$ and $B \subseteq \Gamma^{*}$ be decision problems.
We say that A can be polynomially reduced to B,
written $A \leq_{\mathrm{p}} B$, if there is a function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ such that:

- f can be computed in polynomial time by a DTM
- f reduces A to B
- i.e., for all $w \in \Sigma^{*}: w \in A$ iff $f(w) \in B$
f is called a polynomial reduction from A to B

Transitivity of \leq_{p} : If $A \leq_{\mathrm{p}} B$ and $B \leq_{\mathrm{p}} C$, then $A \leq_{\mathrm{p}} C$.

Proving NP-Completeness by Reduction

- Suppose we know one NP-complete problem (we will use satisfiability of propositional logic formulas).
- With its help, we can then prove quite easily that further problems are NP-complete.

Theorem (Proving NP-Completeness by Reduction)
Let A and B be problems such that:

- A is NP-hard, and
- $A \leq_{\mathrm{p}} B$.

Then B is also NP-hard.
If furthermore $B \in N P$, then B is $N P$-complete.

Definition (NP-Hard, NP-Complete)
Let B be a decision problem.
B is called NP-hard if $A \leq_{\mathrm{p}} B$ for all problems $A \in$ NP.
B is called NP-complete if $B \in$ NP and B is NP-hard.

Proving NP-Completeness by Reduction: Proof

Proof.

First part: We must show $X \leq_{\mathrm{p}} B$ for all $X \in \mathrm{NP}$.
From $X \leq_{\mathrm{p}} A$ (because A is NP-hard) and $A \leq_{\mathrm{p}} B$
(by prerequisite), this follows due to the transitivity of \leq_{p}.
Second part: follows directly by definition of NP-completeness.

- There are thousands of known NP-complete problems
- An extensive catalog of NP-complete problems
from many areas of computer science is contained in:
Michael R. Garey and David S. Johnson:
Computers and Intractability -
A Guide to the Theory of NP-Completeness
W. H. Freeman, 1979.
- In the remaining chapters, we get to know some of these problems.
- We need to establish NP-completeness of one problem "from scratch".
- We will use satisfiability of propositional logic formulas.
- So what is this?

Let's briefly cover the basics

Propositional Logic: Semantics

- A truth assignment for a set of atomic propositions A is a function $\mathcal{I}: A \rightarrow\{T, F\}$.
- A formula can be true or false under a given truth assignment.

Write $\mathcal{I} \models \varphi$ to express that φ is true under \mathcal{I}.

- Atomic variable a is true under \mathcal{I} iff $\mathcal{I}(a)=T$.
- Negation $\neg \varphi$ is true under \mathcal{I} iff φ is not: $\mathcal{I} \vDash \neg \varphi$ iff $\mathcal{I} \not \vDash \varphi$
- Conjunction $\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right)$ is true under \mathcal{I} iff each φ_{i} is: $\mathcal{I} \models\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right)$ iff $\mathcal{I} \models \varphi_{i}$ for all $i \in\{1, \ldots, n\}$
- Disjunction $\left(\varphi_{1} \vee \cdots \vee \varphi_{n}\right)$ is true under \mathcal{I} iff some φ_{i} is: $\mathcal{I} \models\left(\varphi_{1} \vee \cdots \vee \varphi_{n}\right)$ iff exists $i \in\{1, \ldots, n\}$ such that $\mathcal{I} \models \varphi_{i}$

Propositional Logic: Syntax

- Let A be a set of atomic propositions \rightarrow variables that can be true or false
- Every $a \in A$ is a propositional formula over A.
- If φ is a propositional formula over A, then so is its negation $\neg \varphi$.
- If $\varphi_{1}, \ldots, \varphi_{n}$ are propositional formulas over A, then so is the conjunction $\left(\varphi_{1} \wedge \cdots \wedge \varphi_{n}\right)$.
- If $\varphi_{1}, \ldots, \varphi_{n}$ are propositional formulas over A, then so is the disjunction $\left(\varphi_{1} \vee \cdots \vee \varphi_{n}\right)$.

Example

$$
\neg(X \wedge(Y \vee \neg(Z \wedge Y))) \text { is a propositional formula over }\{X, Y, Z\} .
$$

Gabriele Röger (University of Basel)
Theory of Computer Science
May 8, 2024

Propositional Logic: Example
Consider truth assignment $\mathcal{I}=\{X \mapsto F, Y \mapsto T, Z \mapsto F\}$.
Is $\neg(X \wedge(Y \vee \neg(Z \wedge Y)))$ true under \mathcal{I} ?

Propositional Logic: Exercise (slido)

Consider truth assignment

$$
\mathcal{I}=\{X \mapsto F, Y \mapsto T, Z \mapsto F\} .
$$

Is $(X \vee(\neg Z \wedge Y))$ true under \mathcal{I} ?

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$
\sum_{x \in\left\{x_{1}, \ldots, x_{n}\right\}} x=x_{1}+x_{2}+\cdots+x_{n}
$$

Analogously (possible because of commutativity of \wedge and \vee):

$$
\begin{gathered}
\left(\bigwedge_{\varphi \in X} \varphi\right)=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
\left(\bigvee_{\varphi \in X} \varphi\right)=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right) \\
\text { for } X=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}
\end{gathered}
$$

More Propositional Logic

- $(\varphi \rightarrow \psi)$ is a short-hand notation for formula $(\neg \varphi \vee \psi)$.
- $(\varphi \rightarrow \psi)$ is true under variable assignment \mathcal{I} if
- φ is not true under \mathcal{I}, or
- ψ is true under \mathcal{I}.
- If $(\varphi \rightarrow \psi)$ and φ are true under \mathcal{I} then also ψ must be true under \mathcal{I}.
- $(\varphi \leftrightarrow \psi)$ is a short-hand notation for formula $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$
- $(\varphi \leftrightarrow \psi)$ is true under variable assignment \mathcal{I} if
- both, φ and ψ are true under \mathcal{I}, or
- neither φ nor ψ is true under \mathcal{I}.

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:
Given: a propositional logic formula φ
Question: Is φ satisfiable,
i.e. is there a variable assignment \mathcal{I} such that $\mathcal{I} \models \varphi$?

D3.3 Cook-Levin Theorem

D3. Proving NP-Completeness
SAT is NP-complete

SAT is NP-complete
NP-hardness of SAT (1)

Proof (continued).

We must show: $A \leq_{p}$ SAT for all $A \in N P$.
Let A be an arbitrary problem in NP.
We have to find a polynomial reduction of A to SAT,
i. e., a function f computable in polynomial time
such that for every input word w over the alphabet of A :
Proof.
$w \in A$ iff $f(w)$ is a satisfiable propositional formula.
SAT \in NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)
D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

- what the current state of M is
- on which position in Pos the TM head is located
- which symbols from 「 the tape contains at positions Pos
\rightsquigarrow can be encoded by propositional variables
To encode a full computation (rather than just one configuration), we need copies of these variables for each computation step.
We only need to consider the computation steps Steps $=\{0,1, \ldots, p(n)\}$ because M should accept within $p(n)$ steps.

Proof (continued).

Let $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right\rangle$ be an NTM for A, and let p be a polynomial bounding the computation time of M. Without loss of generality, $p(n) \geq n$ for all n.
Let $w=w_{1} \ldots w_{n} \in \Sigma^{*}$ be the input for M.
We number the tape positions with natural numbers such that the TM head initially is on position 1 .

Observation: within $p(n)$ computation steps the TM head can only reach positions in the set $P o s=\{1, \ldots, p(n)+1\}$.
Instead of infinitely many tape positions, we now only Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions.
D3. Proving NP-Comple
Cook-Levin Theorem

NP-hardness of SAT (5)
Proof (continued).
Use the following propositional variables in formula $f(w)$:

- state $_{t, q}(t \in$ Steps, $q \in Q)$
\rightsquigarrow encodes the state of the NTM in the t-th configuration
- head ${ }_{t, i}(t \in$ Steps, $i \in$ Pos $)$
\rightsquigarrow encodes the head position in the t-th configuration
- tape $_{t, i, a}(t \in$ Steps, $i \in$ Pos, $a \in \Gamma)$
\rightsquigarrow encodes the tape content in the t-th configuration
Construct $f(w)$ such that every satisfying interpretation
- describes a sequence of NTM configurations
- that begins with the start configuration,
- reaches an accepting configuration
- and follows the NTM rules in δ

Proof (continued).
Proof (continued).

1. describe the configurations of the TM:

$$
\begin{align*}
\text { Valid }:= & \bigwedge_{t \in \text { Steps }}\left({\text { oneof }\left\{\text { state }_{t, q} \mid q \in Q\right\} \wedge}^{\text {oneof }\left\{\text { head }_{t, i} \mid i \in \operatorname{Pos}\right\}} \wedge\right. \\
& \left.\bigwedge_{i \in \text { Pos }} \text { oneof }\left\{\text { tape }_{t, i, a} \mid a \in \Gamma\right\}\right)
\end{align*}
$$

The symbol \perp stands for an arbitrary unsatisfiable formula
(e.g., $(A \wedge \neg A)$, where A is an arbitrary proposition).
NP-hardness of SAT (8)

Proof (continued).
4. follow the rules in δ (continued):

Rule $_{t,\left\langle\langle q, a\rangle,\left\langle q^{\prime}, a^{\prime}, D\right\rangle\right\rangle}:=$

$$
\begin{aligned}
& \text { state }_{t, q} \wedge \text { state }_{t+1, q^{\prime}} \wedge \\
& \bigwedge\left(\text { head }_{t, i} \rightarrow\left(\text { tape }_{t, i, a} \wedge \text { head }_{t+1, i+D} \wedge \text { tape }_{t+1, i, a^{\prime}}\right)\right) \\
& i \in \text { Pos } \\
& \wedge \bigwedge_{i \in P o s} \bigwedge_{a^{\prime \prime} \in \Gamma}\left(\left(\neg \text { head }_{t, i} \wedge \text { tape }_{t, i, a^{\prime \prime}}\right) \rightarrow \text { tape }_{t+1, i, a^{\prime \prime}}\right)
\end{aligned}
$$

- For $i+D$, interpret $i+\mathrm{R} \rightsquigarrow i+1, i+\mathrm{L} \rightsquigarrow \max \{1, i-1\}$.
- special case: tape and head variables with a tape index $i+D$ outside of Pos are replaced by \perp; likewise all variables with a time index outside of Steps.

D3. Proving NP-Completeness	Cook-Levin
NP-hardness of SAT (12)	
Proof (continued). Putting the pieces together: Set $f(w):=$ Valid \wedge Init \wedge Accept \wedge Trans. - $f(w)$ can be constructed in time polynomial in $\|w\|$. - $w \in A$ iff M accepts w in $p(\|w\|)$ steps iff $f(w)$ is satisfiable iff $f(w) \in$ SAT $\rightsquigarrow A \leq_{\mathrm{p}} \mathrm{SAT}$ Since $A \in$ NP was arbitrary, this is true for every $A \in N P$. Hence SAT is NP-hard and thus also NP-complete.	\square

More Propositional Logic: Conjunctive Normal Form

- A literal is an atomic proposition X or its negation $\neg X$.
- A clause is a disjunction of literals, e.g. $(X \vee \neg Y \vee Z)$
- A formula in conjunctive normal form is a conjunction of clauses,
e.g. $((X \vee \neg Y \vee Z) \wedge(\neg X \vee \neg Z) \wedge(X \vee Y))$

D3. Proving NP-Completeness			${ }^{3 S A T}$
$\mathrm{SAT} \leq_{\mathrm{p}} 3 \mathrm{SAT}$			
SAT			
3SAT			
Clique		SubsetSum	
\downarrow	\downarrow		
IndSET	HamiltonCycle	Partition	
	\downarrow		
VertexCover	TSP	BinPacking	
Gabriele Röger (University of Basel)	Theory of Computer Science	May 8, 2024	$40 / 47$

Theorem (3SAT is NP-Complete)

 3SAT is NP-complete.
Definition (3SAT)

The problem 3SAT is defined as follows:
Given: a propositional logic formula φ in conjunctive normal form with at most three literals per clause
Question: Is φ satisfiable?

3SAT is NP-Complete (3)

Proof (continued).

Proof.

3 SAT \in NP: guess and check.
3 SAT is NP-hard: We show $\mathrm{SAT} \leq_{\mathrm{p}} 3 \mathrm{SAT}$.

- Let φ be the given input for SAT. Let $\operatorname{Sub}(\varphi)$ denote the set of subformulas of φ, including φ itself.
- For all $\psi \in \operatorname{Sub}(\varphi)$, we introduce a new proposition X_{ψ}.
- For each new proposition X_{ψ}, define the following auxiliary formula χ_{ψ} :
- If $\psi=A$ for an atom $A: \chi_{\psi}=\left(X_{\psi} \leftrightarrow A\right)$
- If $\psi=\neg \psi^{\prime}: \chi_{\psi}=\left(X_{\psi} \leftrightarrow \neg X_{\psi^{\prime}}\right)$
- If $\psi=\left(\psi^{\prime} \wedge \psi^{\prime \prime}\right): \chi_{\psi}=\left(X_{\psi} \leftrightarrow\left(X_{\psi^{\prime}} \wedge X_{\psi^{\prime \prime}}\right)\right)$
- If $\psi=\left(\psi^{\prime} \vee \psi^{\prime \prime}\right): \chi_{\psi}=\left(X_{\psi} \leftrightarrow\left(X_{\psi^{\prime}} \vee X_{\psi^{\prime \prime}}\right)\right)$
- Consider the conjunction of all these auxiliary formulas, $\chi_{\mathrm{all}}:=\bigwedge_{\psi \in \operatorname{Sub}(\varphi)} \chi_{\psi}$.
- Every variable assignment \mathcal{I} for the original variables can be extended to a variable assignment \mathcal{I}^{\prime} under which $\chi_{\text {all }}$ is true in exactly one way: for each $\psi \in \operatorname{Sub}(\varphi)$, set $\mathcal{I}^{\prime}\left(X_{\psi}\right)=T$ iff $\mathcal{I} \models \psi$.
- It follows that φ is satisfiable iff $\left(\chi_{\text {all }} \wedge X_{\varphi}\right)$ is satisfiable.
- This formula can be computed in linear time.
- It can also be converted to 3-CNF in linear time because it is the conjunction of constant-size parts involving at most three variables each.
(Each part can be converted to 3-CNF independently.)
- Hence, this describes a polynomial-time reduction.

Note: 3SAT remains NP-complete if we also require that

- every clause contains exactly three literals and
- a clause may not contain the same literal twice Idea:
- remove duplicated literals from each clause.
- add new variables: X, Y, Z
- add new clauses: $(X \vee Y \vee Z),(X \vee Y \vee \neg Z),(X \vee \neg Y \vee Z)$, $(\neg X \vee Y \vee Z),(X \vee \neg Y \vee \neg Z),(\neg X \vee Y \vee \neg Z)$, $(\neg X \vee \neg Y \vee Z)$
\rightsquigarrow satisfied if and only if X, Y, Z are all true
- fill up clauses with fewer than three literals with $\neg X$ and if necessary additionally with $\neg Y$

Summary

- Thousands of important problems are NP-complete.
- The satisfiability problem of propositional logic (SAT) is NP-complete.
- Proof idea for NP-hardness:
- Every problem in NP can be solved by an NTM in polynomial time $p(|w|)$ for input w.
- Given a word w, construct a propositional logic formula φ that encodes the computation steps of the NTM on input w.
- Construct φ so that it is satisfiable if and only if there is an accepting computation of length $p(|w|)$.
- Usually (as seen for 3SAT), the easiest way to show that another problem is NP-complete is to
- show that it is in NP with a guess-and-check algorithm, and
- polynomially reduce a known NP-complete to it.

