
Theory of Computer Science
D3. Proving NP-Completeness

Gabriele Röger

University of Basel

May 8, 2024

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 1 / 47

Theory of Computer Science
May 8, 2024 — D3. Proving NP-Completeness

D3.1 Overview

D3.2 Propositional Logic

D3.3 Cook-Levin Theorem

D3.4 3SAT

D3.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 2 / 47

D3. Proving NP-Completeness Overview

D3.1 Overview

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 3 / 47

D3. Proving NP-Completeness Overview

Reminder: P and NP

P: class of languages that are decidable in polynomial time

by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time

by a non-deterministic Turing machine

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 4 / 47

D3. Proving NP-Completeness Overview

Reminder: Polynomial Reductions

Definition (Polynomial Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be decision problems.
We say that A can be polynomially reduced to B,
written A ≤p B, if there is a function f : Σ∗ → Γ∗ such that:

▶ f can be computed in polynomial time by a DTM
▶ f reduces A to B

▶ i. e., for all w ∈ Σ∗: w ∈ A iff f (w) ∈ B

f is called a polynomial reduction from A to B

Transitivity of ≤p: If A ≤p B and B ≤p C , then A ≤p C .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 5 / 47

D3. Proving NP-Completeness Overview

Reminder: NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if A ≤p B for all problems A ∈ NP.

B is called NP-complete if B ∈ NP and B is NP-hard.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 6 / 47

D3. Proving NP-Completeness Overview

Proving NP-Completeness by Reduction

▶ Suppose we know one NP-complete problem
(we will use satisfiability of propositional logic formulas).

▶ With its help, we can then prove quite easily
that further problems are NP-complete.

Theorem (Proving NP-Completeness by Reduction)

Let A and B be problems such that:

▶ A is NP-hard, and

▶ A ≤p B.

Then B is also NP-hard.
If furthermore B ∈ NP, then B is NP-complete.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 7 / 47

D3. Proving NP-Completeness Overview

Proving NP-Completeness by Reduction: Proof

Proof.
First part: We must show X ≤p B for all X ∈ NP.

From X ≤p A (because A is NP-hard) and A ≤p B
(by prerequisite), this follows due to the transitivity of ≤p.

Second part: follows directly by definition of NP-completeness.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 8 / 47

D3. Proving NP-Completeness Overview

NP-Complete Problems

▶ There are thousands of known NP-complete problems.

▶ An extensive catalog of NP-complete problems
from many areas of computer science is contained in:

Michael R. Garey and David S. Johnson:
Computers and Intractability —
A Guide to the Theory of NP-Completeness
W. H. Freeman, 1979.

▶ In the remaining chapters, we get to know
some of these problems.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 9 / 47

D3. Proving NP-Completeness Overview

Overview of the Reductions

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 10 / 47

D3. Proving NP-Completeness Overview

What Do We Have to Do?

▶ We want to show the NP-completeness of these 11 problems.

▶ We first show that SAT is NP-complete.
▶ Then it is sufficient to show

▶ that polynomial reductions exist for all edges in the figure
(and thus all problems are NP-hard)

▶ and that the problems are all in NP.

(It would be sufficient to show membership in NP only for
the leaves in the figure. But membership is so easy to show
that this would not save any work.)

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 11 / 47

D3. Proving NP-Completeness Propositional Logic

D3.2 Propositional Logic

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 12 / 47

D3. Proving NP-Completeness Propositional Logic

▶ We need to establish NP-completeness of one problem
“from scratch”.

▶ We will use satisfiability of propositional logic formulas.

▶ So what is this?

Let’s briefly cover the basics.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 13 / 47

D3. Proving NP-Completeness Propositional Logic

Propositional Logic: Syntax

▶ Let A be a set of atomic propositions
→ variables that can be true or false

▶ Every a ∈ A is a propositional formula over A.

▶ If φ is a propositional formula over A,
then so is its negation ¬φ.

▶ If φ1, . . . , φn are propositional formulas over A,
then so is the conjunction (φ1 ∧ · · · ∧ φn).

▶ If φ1, . . . , φn are propositional formulas over A,
then so is the disjunction (φ1 ∨ · · · ∨ φn).

Example

¬(X ∧ (Y ∨ ¬(Z ∧ Y))) is a propositional formula over {X ,Y ,Z}.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 14 / 47

D3. Proving NP-Completeness Propositional Logic

Propositional Logic: Semantics

▶ A truth assignment for a set of atomic propositions A is a
function I : A → {T ,F}.

▶ A formula can be true or false under a given truth assignment.
Write I |= φ to express that φ is true under I.
▶ Atomic variable a is true under I iff I(a) = T .
▶ Negation ¬φ is true under I iff φ is not:

I |= ¬φ iff I ̸|= φ
▶ Conjunction (φ1 ∧ · · · ∧ φn) is true under I iff each φi is:

I |= (φ1 ∧ · · · ∧ φn) iff I |= φi for all i ∈ {1, . . . , n}
▶ Disjunction (φ1 ∨ · · · ∨ φn) is true under I iff some φi is:

I |= (φ1 ∨ · · · ∨ φn) iff exists i ∈ {1, . . . , n} such that I |= φi

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 15 / 47

D3. Proving NP-Completeness Propositional Logic

Propositional Logic: Example

Consider truth assignment I = {X 7→ F ,Y 7→ T ,Z 7→ F}.

Is ¬(X ∧ (Y ∨ ¬(Z ∧ Y))) true under I?

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 16 / 47

D3. Proving NP-Completeness Propositional Logic

Propositional Logic: Exercise (slido)

Consider truth assignment

I = {X 7→ F ,Y 7→ T ,Z 7→ F}.

Is (X ∨ (¬Z ∧ Y)) true under I?

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 17 / 47

D3. Proving NP-Completeness Propositional Logic

More Propositional Logic

▶ (φ→ ψ) is a short-hand notation for formula (¬φ ∨ ψ).
▶ (φ→ ψ) is true under variable assignment I if

▶ φ is not true under I, or
▶ ψ is true under I.

▶ If (φ→ ψ) and φ are true under I
then also ψ must be true under I.

▶ (φ↔ ψ) is a short-hand notation for formula
((φ→ ψ) ∧ (ψ → φ))

▶ (φ↔ ψ) is true under variable assignment I if
▶ both, φ and ψ are true under I, or
▶ neither φ nor ψ is true under I.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 18 / 47

D3. Proving NP-Completeness Propositional Logic

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

∑
x∈{x1,...,xn}

x = x1 + x2 + · · ·+ xn

Analogously (possible because of commutativity of ∧ and ∨):(∧
φ∈X

φ
)
= (φ1 ∧ φ2 ∧ · · · ∧ φn)(∨

φ∈X
φ
)
= (φ1 ∨ φ2 ∨ · · · ∨ φn)

for X = {φ1, . . . , φn}

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 19 / 47

D3. Proving NP-Completeness Propositional Logic

SAT Problem

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula φ

Question: Is φ satisfiable,
i.e. is there a variable assignment I such that I |= φ?

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 20 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

D3.3 Cook-Levin Theorem

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 21 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

complexity
theory

nondeterminism

P and NP

polynomial
reductions

Cook-Levin
theorem

NP-complete
problems

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 22 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula φ

Question: Is φ satisfiable?

Theorem (Cook, 1971; Levin, 1973)

SAT is NP-complete.

Proof.
SAT ∈ NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 23 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (1)

Proof (continued).

We must show: A ≤p SAT for all A ∈ NP.

Let A be an arbitrary problem in NP.

We have to find a polynomial reduction of A to SAT,
i. e., a function f computable in polynomial time
such that for every input word w over the alphabet of A:

w ∈ A iff f (w) is a satisfiable propositional formula. . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 24 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (2)

Proof (continued).

Because A ∈ NP, there is an NTM M and a polynomial p
such that M decides the problem A in time p.

Idea: construct a formula that encodes the possible configurations
which M can reach in time p(|w |) on input w
and that is satisfiable if and only if
an accepting configuration can be reached in this time. . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 25 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (3)

Proof (continued).

Let M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩ be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) ≥ n for all n.

Let w = w1 . . .wn ∈ Σ∗ be the input for M.

We number the tape positions with natural numbers such that the
TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set Pos = {1, . . . , p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions. . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 26 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

▶ what the current state of M is

▶ on which position in Pos the TM head is located

▶ which symbols from Γ the tape contains at positions Pos

⇝ can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps = {0, 1, . . . , p(n)} because M should accept
within p(n) steps. . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 27 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (5)

Proof (continued).

Use the following propositional variables in formula f (w):

▶ statet,q (t ∈ Steps, q ∈ Q)
⇝ encodes the state of the NTM in the t-th configuration

▶ headt,i (t ∈ Steps, i ∈ Pos)
⇝ encodes the head position in the t-th configuration

▶ tapet,i ,a (t ∈ Steps, i ∈ Pos, a ∈ Γ)
⇝ encodes the tape content in the t-th configuration

Construct f (w) such that every satisfying interpretation

▶ describes a sequence of NTM configurations

▶ that begins with the start configuration,

▶ reaches an accepting configuration

▶ and follows the NTM rules in δ

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 28 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (6)

Proof (continued).

Auxiliary formula:

oneof X :=

(∨
x∈X

x

)
∧ ¬

∨
x∈X

∨
y∈X\{x}

(x ∧ y)

Auxiliary notation:

The symbol ⊥ stands for an arbitrary unsatisfiable formula
(e.g., (A ∧ ¬A), where A is an arbitrary proposition). . . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 29 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (7)

Proof (continued).

1. describe the configurations of the TM:

Valid :=
∧

t∈Steps

(
oneof {statet,q | q ∈ Q} ∧

oneof {headt,i | i ∈ Pos} ∧∧
i∈Pos

oneof {tapet,i ,a | a ∈ Γ}
)

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 30 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (8)

Proof (continued).

2. begin in the start configuration

Init := state0,q0 ∧ head0,1 ∧
∧n

i=1 tape0,i ,wi
∧
∧

i∈Pos\{1,...,n} tape0,i ,□
. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 31 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (9)

Proof (continued).

3. reach an accepting configuration

Accept :=
∨

t∈Steps
statet,qaccept

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 32 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (10)

Proof (continued).

4. follow the rules in δ:

Trans :=
∧

t∈Steps

(
statet,qaccept ∨ statet,qreject ∨

∨
R∈δ

Rulet,R

)

where.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 33 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (11)

Proof (continued).

4. follow the rules in δ (continued):

Rulet,⟨⟨q,a⟩,⟨q′,a′,D⟩⟩ :=

statet,q ∧ statet+1,q′ ∧∧
i∈Pos

(
headt,i →

(
tapet,i ,a ∧ headt+1,i+D ∧ tapet+1,i ,a′

))
∧
∧

i∈Pos

∧
a′′∈Γ

((
¬headt,i ∧ tapet,i ,a′′

)
→ tapet+1,i ,a′′

)

▶ For i + D, interpret i + R⇝ i + 1, i + L⇝ max{1, i − 1}.
▶ special case: tape and head variables with a tape index i + D

outside of Pos are replaced by ⊥; likewise all variables
with a time index outside of Steps.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 34 / 47

D3. Proving NP-Completeness Cook-Levin Theorem

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

▶ f (w) can be constructed in time polynomial in |w |.
▶ w ∈ A iff M accepts w in p(|w |) steps

w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

⇝ A ≤p SAT

Since A ∈ NP was arbitrary, this is true for every A ∈ NP.
Hence SAT is NP-hard and thus also NP-complete.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 35 / 47

D3. Proving NP-Completeness 3SAT

D3.4 3SAT

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 36 / 47

D3. Proving NP-Completeness 3SAT

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

complexity
theory

nondeterminism

P and NP

polynomial
reductions

Cook-Levin
theorem

NP-complete
problems

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 37 / 47

D3. Proving NP-Completeness 3SAT

More Propositional Logic: Conjunctive Normal Form

▶ A literal is an atomic proposition X or its negation ¬X .

▶ A clause is a disjunction of literals,
e.g. (X ∨ ¬Y ∨ Z)

▶ A formula in conjunctive normal form
is a conjunction of clauses,
e.g. ((X ∨ ¬Y ∨ Z) ∧ (¬X ∨ ¬Z) ∧ (X ∨ Y))

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 38 / 47

D3. Proving NP-Completeness 3SAT

Exercise (slido)

Which of the following formulas are in conjunctive
normal form?

▶ ((X ∧ ¬Y ∧ Z) ∨ (¬X ∧ ¬Z))
▶ (X ∨ ¬Y ∨ Z)

▶ ((¬X ∨ ¬Z) ∧ ¬(X ∨ Y))

▶ ((¬Y ∨ X) ∧ (Y ∨ ¬Z))

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 39 / 47

D3. Proving NP-Completeness 3SAT

SAT ≤p 3SAT

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 40 / 47

D3. Proving NP-Completeness 3SAT

SAT and 3SAT

Definition (Reminder: SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula φ

Question: Is φ satisfiable?

Definition (3SAT)

The problem 3SAT is defined as follows:

Given: a propositional logic formula φ in conjunctive normal form
with at most three literals per clause

Question: Is φ satisfiable?

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 41 / 47

D3. Proving NP-Completeness 3SAT

3SAT is NP-Complete (1)

Theorem (3SAT is NP-Complete)

3SAT is NP-complete.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 42 / 47

D3. Proving NP-Completeness 3SAT

3SAT is NP-Complete (2)

Proof.
3SAT ∈ NP: guess and check.

3SAT is NP-hard: We show SAT ≤p 3SAT.

▶ Let φ be the given input for SAT. Let Sub(φ) denote
the set of subformulas of φ, including φ itself.

▶ For all ψ ∈ Sub(φ), we introduce a new proposition Xψ.

▶ For each new proposition Xψ, define the following
auxiliary formula χψ:
▶ If ψ = A for an atom A: χψ = (Xψ ↔ A)
▶ If ψ = ¬ψ′: χψ = (Xψ ↔ ¬Xψ′)
▶ If ψ = (ψ′ ∧ ψ′′): χψ = (Xψ ↔ (Xψ′ ∧ Xψ′′))
▶ If ψ = (ψ′ ∨ ψ′′): χψ = (Xψ ↔ (Xψ′ ∨ Xψ′′))

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 43 / 47

D3. Proving NP-Completeness 3SAT

3SAT is NP-Complete (3)

Proof (continued).
▶ Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(φ) χψ.

▶ Every variable assignment I for the original variables
can be extended to a variable assignment I ′

under which χall is true in exactly one way:
for each ψ ∈ Sub(φ), set I ′(Xψ) = T iff I |= ψ.

▶ It follows that φ is satisfiable iff (χall ∧ Xφ) is satisfiable.

▶ This formula can be computed in linear time.

▶ It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

▶ Hence, this describes a polynomial-time reduction.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 44 / 47

D3. Proving NP-Completeness 3SAT

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that

▶ every clause contains exactly three literals and

▶ a clause may not contain the same literal twice

Idea:

▶ remove duplicated literals from each clause.

▶ add new variables: X , Y , Z

▶ add new clauses: (X ∨Y ∨ Z), (X ∨Y ∨¬Z), (X ∨¬Y ∨ Z),
(¬X ∨ Y ∨ Z), (X ∨ ¬Y ∨ ¬Z), (¬X ∨ Y ∨ ¬Z),
(¬X ∨ ¬Y ∨ Z)

⇝ satisfied if and only if X , Y , Z are all true

▶ fill up clauses with fewer than three literals
with ¬X and if necessary additionally with ¬Y

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 45 / 47

D3. Proving NP-Completeness Summary

D3.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 46 / 47

D3. Proving NP-Completeness Summary

Summary

▶ Thousands of important problems are NP-complete.

▶ The satisfiability problem of propositional logic (SAT)
is NP-complete.

▶ Proof idea for NP-hardness:
▶ Every problem in NP can be solved by an NTM

in polynomial time p(|w |) for input w .
▶ Given a word w , construct a propositional logic formula φ

that encodes the computation steps of the NTM on input w .
▶ Construct φ so that it is satisfiable if and only if

there is an accepting computation of length p(|w |).
▶ Usually (as seen for 3SAT), the easiest way to show

that another problem is NP-complete is to
▶ show that it is in NP with a guess-and-check algorithm, and
▶ polynomially reduce a known NP-complete to it.

Gabriele Röger (University of Basel) Theory of Computer Science May 8, 2024 47 / 47

	Overview
	

	Propositional Logic
	

	Cook-Levin Theorem
	

	3SAT
	

	Summary
	

