Theory of Computer Science D2. Polynomial Reductions and NP-completeness

Gabriele Röger

University of Basel

May 6, 2024

Polynomial Reductions

Content of the Course

Polynomial Reductions: Idea

- Reductions are a common and powerful concept in computer science. We know them from Part C.
- The basic idea is that we solve a new problem by reducing it to a known problem.

Polynomial Reductions: Idea

- Reductions are a common and powerful concept in computer science. We know them from Part C.
- The basic idea is that we solve a new problem by reducing it to a known problem.
- In complexity theory we want to use reductions that allow us to prove statements of the following kind: *Problem A can be solved efficiently if problem B can be solved efficiently.*
- For this, we need a reduction from A to B that can be computed efficiently itself (otherwise it would be useless for efficiently solving A).

Polynomial Reductions

Definition (Polynomial Reduction)

Let A ⊆ Σ* and B ⊆ Γ* be decision problems.
We say that A can be polynomially reduced to B, written A ≤_p B, if there is a function f : Σ* → Γ* such that:
f can be computed in polynomial time by a DTM
i.e., there is a polynomial p and a DTM M such that M computes f(w) in at most p(|w|) steps given input w ∈ Σ*
f reduces A to B
i.e., for all w ∈ Σ*: w ∈ A iff f(w) ∈ B

f is called a polynomial reduction from A to B

Polynomial Reductions: Remarks

- Polynomial reductions are also called Karp reductions (after Richard Karp, who wrote a famous paper describing many such reductions in 1972).
- In practice, of course we do not have to specify a DTM for f: it just has to be clear that f can be computed in polynomial time by a deterministic algorithm.

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HAMILTONCYCLE is the following decision problem:

- Given: undirected graph $G = \langle V, E \rangle$
- Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

- A Hamilton cycle of G is a sequence of vertices in V,
- $\pi = \langle v_0, \dots, v_n \rangle$, with the following properties:
 - π is a path: there is an edge from v_i to v_{i+1} for all $0 \le i < n$
 - π is a cycle: $v_0 = v_n$
 - π is simple: $v_i \neq v_j$ for all $i \neq j$ with i, j < n
 - π is Hamiltonian: all nodes of V are included in π

Polynomial Reductions: Example (2)

Definition (TSP)

 TSP (traveling salesperson problem) is the following decision problem:

- Given: finite set $S \neq \emptyset$ of cities, symmetric cost function $cost: S \times S \rightarrow \mathbb{N}_0$, cost bound $K \in \mathbb{N}_0$
- Question: Is there a tour with total cost at most K, i.e., a permutation $\langle s_1, \ldots, s_n \rangle$ of the cities with $\sum_{i=1}^{n-1} cost(s_i, s_{i+1}) + cost(s_n, s_1) \leq K$?

Summary 00

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE \leq_{p} TSP)

HAMILTONCYCLE \leq_{p} TSP.

Proof.

 \rightsquigarrow blackboard

Summary 00

Questions

Questions?

Exercise: Polynomial Reduction

Definition (HAMILTONIANCOMPLETION)

HAMILTONIANCOMPLETION is the following decision problem:

- Given: undirected graph $G = \langle V, E \rangle$, number $k \in \mathbb{N}_0$
- Question: Can G be extended with at most k edges such that the resulting graph has a Hamilton cycle?

Show that HAMILTONCYCLE \leq_p HAMILTONIANCOMPLETION.

Reminder: P and NP

- P: class of languages that are decidable in polynomial time by a deterministic Turing machine
- NP: class of languages that are decidable in polynomial time by a non-deterministic Turing machine

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)

Let A, B and C decision problems.

- If $A \leq_p B$ and $B \in P$, then $A \in P$.
- **2** If $A \leq_p B$ and $B \in NP$, then $A \in NP$.
- If $A \leq_p B$ and $A \notin P$, then $B \notin P$.
- If $A \leq_p B$ and $A \notin NP$, then $B \notin NP$.
- If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.

. . .

Properties of Polynomial Reductions (2)

Proof.

for 1.:

We must show that there is a DTM deciding A in polynomial time.

We know:

- There is a DTM M_B that decides B in time p, where p is a polynomial.
- There is a DTM M_f that computes a reduction from A to B in time q, where q is a polynomial.

. . .

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like M_f , and then (after M_f stops) behaves like M_B on the output of M_f .

M decides *A*:

- *M* behaves on input *w* as M_B does on input f(w), so it accepts *w* if and only if $f(w) \in B$.
- Because f is a reduction, $w \in A$ iff $f(w) \in B$.

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w:

- first M_f runs on input $w : \leq q(|w|)$ steps
- then M_B runs on input f(w): $\leq p(|f(w)|)$ steps
- $|f(w)| \le |w| + q(|w|)$ because in q(|w|) steps, M_f can write at most q(|w|) additional symbols onto the tape
- → total computation time $\leq q(|w|) + p(|f(w)|)$ $\leq q(|w|) + p(|w| + q(|w|))$
- \rightsquigarrow this is polynomial in $|w| \rightsquigarrow A \in \mathsf{P}$.

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:

analogous to 1., only that M_B and M are NTMs

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.: analogous to 1., only that M_B and M are NTMs

of 3.+4.:

equivalent formulations of 1.+2. (contraposition)

Properties of Polynomial Reductions (5)

Proof (continued).

```
for 2.:
```

analogous to 1., only that M_B and M are NTMs

```
of 3.+4.:
```

equivalent formulations of 1.+2. (contraposition)

of 5.:

Let $A \leq_p B$ with reduction f and $B \leq_p C$ with reduction g. Then $g \circ f$ is a reduction of A to C.

The computation time of the two computations in sequence is polynomial by the same argument used in the proof for 1.

Summary 00

Questions

Questions?

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if $A \leq_p B$ for all problems $A \in NP$.

B is called NP-complete if $B \in NP$ and *B* is NP-hard.

NP-Complete Problems: Meaning

- NP-hard problems are "at least as difficult" as all problems in NP.
- NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.

NP-Complete Problems: Meaning

- NP-hard problems are "at least as difficult" as all problems in NP.
- NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.
- If A ∈ P for any NP-complete problem A, then P = NP. (Why?)
- That means that either there are efficient algorithms for all NP-complete problems or for none of them.

NP-Complete Problems: Meaning

- NP-hard problems are "at least as difficult" as all problems in NP.
- NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.
- If A ∈ P for any NP-complete problem A, then P = NP. (Why?)
- That means that either there are efficient algorithms for all NP-complete problems or for none of them.
- Do NP-complete problems actually exist?

NP-Hardness and NP-Completeness $_{\text{OOO}}\bullet$

Summary 00

Questions

Questions?

Summary

Summary

- polynomial reductions: A ≤_p B if there is a total function f computable in polynomial time, such that for all words w: w ∈ A iff f(w) ∈ B
- $A \leq_p B$ implies that A is "at most as difficult" as B
- polynomial reductions are transitive
- NP-hard problems $B: A \leq_p B$ for all $A \in NP$
- **NP-complete** problems $B: B \in NP$ and B is NP-hard