
Theory of Computer Science
D2. Polynomial Reductions and NP-completeness

Gabriele Röger

University of Basel

May 6, 2024

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 1 / 22

Theory of Computer Science
May 6, 2024 — D2. Polynomial Reductions and NP-completeness

D2.1 Polynomial Reductions

D2.2 NP-Hardness and NP-Completeness

D2.3 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 2 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

D2.1 Polynomial Reductions

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 3 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

complexity
theory

nondeterminism

P and NP

polynomial
reductions

Cook-Levin
theorem

NP-complete
problems

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 4 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Polynomial Reductions: Idea

▶ Reductions are a common and powerful concept in computer
science. We know them from Part C.

▶ The basic idea is that we solve a new problem by reducing it
to a known problem.

▶ In complexity theory we want to use reductions
that allow us to prove statements of the following kind:
Problem A can be solved efficiently
if problem B can be solved efficiently.

▶ For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 5 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Polynomial Reductions

Definition (Polynomial Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be decision problems.
We say that A can be polynomially reduced to B,
written A ≤p B, if there is a function f : Σ∗ → Γ∗ such that:
▶ f can be computed in polynomial time by a DTM

▶ i. e., there is a polynomial p and a DTM M such that M
computes f (w) in at most p(|w |) steps given input w ∈ Σ∗

▶ f reduces A to B
▶ i. e., for all w ∈ Σ∗: w ∈ A iff f (w) ∈ B

f is called a polynomial reduction from A to B

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 6 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Polynomial Reductions: Remarks

▶ Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).

▶ In practice, of course we do not have to specify a DTM for f :
it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 7 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Polynomial Reductions: Example (1)

Definition (HamiltonCycle)

HamiltonCycle is the following decision problem:

▶ Given: undirected graph G = ⟨V ,E ⟩
▶ Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V ,
π = ⟨v0, . . . , vn⟩, with the following properties:

▶ π is a path: there is an edge from vi to vi+1 for all 0 ≤ i < n

▶ π is a cycle: v0 = vn
▶ π is simple: vi ̸= vj for all i ̸= j with i , j < n

▶ π is Hamiltonian: all nodes of V are included in π

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 8 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Polynomial Reductions: Example (2)

Definition (TSP)

TSP (traveling salesperson problem) is the following
decision problem:

▶ Given: finite set S ̸= ∅ of cities, symmetric cost function
cost : S × S → N0, cost bound K ∈ N0

▶ Question: Is there a tour with total cost at most K , i. e.,
a permutation ⟨s1, . . . , sn⟩ of the cities with∑n−1

i=1 cost(si , si+1) + cost(sn, s1) ≤ K?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 9 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Polynomial Reductions: Example (3)

Theorem (HamiltonCycle ≤p TSP)

HamiltonCycle ≤p TSP.

Proof.
⇝ blackboard

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 10 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Exercise: Polynomial Reduction

Definition (HamiltonianCompletion)

HamiltonianCompletion is the following decision problem:

▶ Given: undirected graph G = ⟨V ,E ⟩, number k ∈ N0

▶ Question: Can G be extended with at most k edges such that
the resulting graph has a Hamilton cycle?

Show that
HamiltonCycle ≤p HamiltonianCompletion.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 11 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Reminder: P and NP

P: class of languages that are decidable in polynomial time

by a deterministic Turing machine

NP: class of languages that are decidable in polynomial time

by a non-deterministic Turing machine

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 12 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)

Let A, B and C decision problems.

1 If A ≤p B and B ∈ P, then A ∈ P.

2 If A ≤p B and B ∈ NP, then A ∈ NP.

3 If A ≤p B and A /∈ P, then B /∈ P.

4 If A ≤p B and A /∈ NP, then B /∈ NP.

5 If A ≤p B and B ≤p C, then A ≤p C.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 13 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Properties of Polynomial Reductions (2)

Proof.
for 1.:

We must show that there is a DTM deciding A
in polynomial time.

We know:

▶ There is a DTM MB that decides B in time p,
where p is a polynomial.

▶ There is a DTM Mf that computes a reduction from A to B
in time q, where q is a polynomial.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 14 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like Mf , and then
(after Mf stops) behaves like MB on the output of Mf .

M decides A:

▶ M behaves on input w as MB does on input f (w),
so it accepts w if and only if f (w) ∈ B.

▶ Because f is a reduction, w ∈ A iff f (w) ∈ B.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 15 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w :

▶ first Mf runs on input w : ≤ q(|w |) steps
▶ then MB runs on input f (w): ≤ p(|f (w)|) steps
▶ |f (w)| ≤ |w |+ q(|w |) because in q(|w |) steps,

Mf can write at most q(|w |) additional symbols onto the tape

⇝ total computation time ≤ q(|w |) + p(|f (w)|)
≤ q(|w |) + p(|w |+ q(|w |))

⇝ this is polynomial in |w | ⇝ A ∈ P.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 16 / 22

D2. Polynomial Reductions and NP-completeness Polynomial Reductions

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that MB and M are NTMs

of 3.+4.:
equivalent formulations of 1.+2. (contraposition)

of 5.:
Let A ≤p B with reduction f and B ≤p C with reduction g .
Then g ◦ f is a reduction of A to C .

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 17 / 22

D2. Polynomial Reductions and NP-completeness NP-Hardness and NP-Completeness

D2.2 NP-Hardness and
NP-Completeness

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 18 / 22

D2. Polynomial Reductions and NP-completeness NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if A ≤p B for all problems A ∈ NP.

B is called NP-complete if B ∈ NP and B is NP-hard.

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 19 / 22

D2. Polynomial Reductions and NP-completeness NP-Hardness and NP-Completeness

NP-Complete Problems: Meaning

▶ NP-hard problems are “at least as difficult”
as all problems in NP.

▶ NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

▶ If A ∈ P for any NP-complete problem A, then P = NP.
(Why?)

▶ That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

▶ Do NP-complete problems actually exist?

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 20 / 22

D2. Polynomial Reductions and NP-completeness Summary

D2.3 Summary

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 21 / 22

D2. Polynomial Reductions and NP-completeness Summary

Summary

▶ polynomial reductions: A ≤p B if
there is a total function f computable in polynomial time,
such that for all words w : w ∈ A iff f (w) ∈ B

▶ A ≤p B implies that A is “at most as difficult” as B

▶ polynomial reductions are transitive

▶ NP-hard problems B: A ≤p B for all A ∈ NP

▶ NP-complete problems B: B ∈ NP and B is NP-hard

Gabriele Röger (University of Basel) Theory of Computer Science May 6, 2024 22 / 22

	Polynomial Reductions
	

	NP-Hardness and NP-Completeness
	

	Summary
	

