Theory of Computer Science D2. Polynomial Reductions and NP-completeness

Gabriele Röger

University of Basel

May 6, 2024

Gabriele Röger (University of Basel)

Theory of Computer Science

May 6, 2024 1 / 22

Theory of Computer Science May 6, 2024 — D2. Polynomial Reductions and NP-completeness

D2.1 Polynomial Reductions

D2.2 NP-Hardness and NP-Completeness

D2.3 Summary

Gabriele Röger (University of Basel)

Theory of Computer Science

D2.1 Polynomial Reductions

Content of the Course

Polynomial Reductions: Idea

- Reductions are a common and powerful concept in computer science. We know them from Part C.
- The basic idea is that we solve a new problem by reducing it to a known problem.
- In complexity theory we want to use reductions that allow us to prove statements of the following kind: Problem A can be solved efficiently if problem B can be solved efficiently.
- For this, we need a reduction from A to B that can be computed efficiently itself (otherwise it would be useless for efficiently solving A).

Polynomial Reductions

Gabriele Röger (University of Basel)

D2. Polynomial Reductions and NP-completeness

Polynomial Reductions: Remarks

- Polynomial reductions are also called Karp reductions (after Richard Karp, who wrote a famous paper describing many such reductions in 1972).
- In practice, of course we do not have to specify a DTM for f: it just has to be clear that f can be computed in polynomial time by a deterministic algorithm.

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HAMILTONCYCLE is the following decision problem:

- Given: undirected graph $G = \langle V, E \rangle$
- Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)

A Hamilton cycle of G is a sequence of vertices in V,

- $\pi = \langle v_0, \ldots, v_n \rangle$, with the following properties:
 - ▶ π is a path: there is an edge from v_i to v_{i+1} for all $0 \le i < n$

•
$$\pi$$
 is a cycle: $v_0 = v_n$

- π is simple: $v_i \neq v_j$ for all $i \neq j$ with i, j < n
- π is Hamiltonian: all nodes of V are included in π

Polynomial Reductions: Example (2)

Definition (TSP)

TSP (traveling salesperson problem) is the following decision problem:

- ▶ Given: finite set $S \neq \emptyset$ of cities, symmetric cost function *cost* : $S \times S \rightarrow \mathbb{N}_0$, cost bound $K \in \mathbb{N}_0$
- ▶ Question: Is there a tour with total cost at most K, i.e., a permutation $\langle s_1, \ldots, s_n \rangle$ of the cities with $\sum_{i=1}^{n-1} cost(s_i, s_{i+1}) + cost(s_n, s_1) \leq K$?

D2. Polynomial Reductions and NP-completeness

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE \leq_p TSP) HAMILTONCYCLE \leq_p TSP.

Proof. \rightsquigarrow blackboard

Exercise: Polynomial Reduction

Definition (HAMILTONIANCOMPLETION)

HAMILTONIANCOMPLETION is the following decision problem:

- ▶ Given: undirected graph $G = \langle V, E \rangle$, number $k \in \mathbb{N}_0$
- Question: Can G be extended with at most k edges such that the resulting graph has a Hamilton cycle?

Show that HAMILTONCYCLE \leq_p HAMILTONIANCOMPLETION.

Reminder: P and NP

- P: class of languages that are decidable in polynomial time by a deterministic Turing machine
- NP: class of languages that are decidable in polynomial time by a non-deterministic Turing machine

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions) Let A, B and C decision problems. a) If $A \leq_p B$ and $B \in P$, then $A \in P$. b) If $A \leq_p B$ and $B \in NP$, then $A \in NP$. c) If $A \leq_p B$ and $A \notin P$, then $B \notin P$. c) If $A \leq_p B$ and $A \notin NP$, then $B \notin NP$.

5 If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$.

Properties of Polynomial Reductions (2)

```
Proof.
for 1.:
We must show that there is a DTM deciding A
in polynomial time.
We know:
 \blacktriangleright There is a DTM M_B that decides B in time p.
     where p is a polynomial.
 There is a DTM M<sub>f</sub> that computes a reduction from A to B
     in time q, where q is a polynomial.
                                                                     . . .
```

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like M_f , and then (after M_f stops) behaves like M_B on the output of M_f .

M decides A:

- M behaves on input w as M_B does on input f(w), so it accepts w if and only if f(w) ∈ B.
- Because f is a reduction, $w \in A$ iff $f(w) \in B$.

. . .

Properties of Polynomial Reductions (4)

Proof (continued).

Computation time of M on input w:

- First M_f runs on input $w : \leq q(|w|)$ steps
- ▶ then M_B runs on input f(w): $\leq p(|f(w)|)$ steps
- |f(w)| ≤ |w| + q(|w|) because in q(|w|) steps,
 M_f can write at most q(|w|) additional symbols onto the tape
- → total computation time $\leq q(|w|) + p(|f(w)|)$ $\leq q(|w|) + p(|w| + q(|w|))$
- \rightsquigarrow this is polynomial in $|w| \rightsquigarrow A \in P$.

. . .

Properties of Polynomial Reductions (5)

```
Proof (continued).
for 2.:
analogous to 1., only that M_B and M are NTMs
of 3.+4.:
equivalent formulations of 1.+2. (contraposition)
of 5.:
Let A \leq_{p} B with reduction f and B \leq_{p} C with reduction g.
Then g \circ f is a reduction of A to C.
The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1.
```

D2.2 NP-Hardness and NP-Completeness

D2. Polynomial Reductions and NP-completeness

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)

Let B be a decision problem.

B is called NP-hard if $A \leq_p B$ for all problems $A \in NP$.

B is called NP-complete if $B \in NP$ and *B* is NP-hard.

NP-Complete Problems: Meaning

- NP-hard problems are "at least as difficult" as all problems in NP.
- NP-complete problems are "the most difficult" problems in NP: all problems in NP can be reduced to them.
- If A ∈ P for any NP-complete problem A, then P = NP. (Why?)
- That means that either there are efficient algorithms for all NP-complete problems or for none of them.
- Do NP-complete problems actually exist?

D2.3 Summary

Gabriele Röger (University of Basel)

Theory of Computer Science

May 6, 2024 21 / 22

Summary

- ▶ polynomial reductions: A ≤_p B if there is a total function f computable in polynomial time, such that for all words w: w ∈ A iff f(w) ∈ B
- $A \leq_p B$ implies that A is "at most as difficult" as B
- polynomial reductions are transitive
- ▶ NP-hard problems $B: A \leq_p B$ for all $A \in NP$
- ▶ NP-complete problems B: $B \in NP$ and B is NP-hard