Theory of Computer Science C6. Rice's Theorem

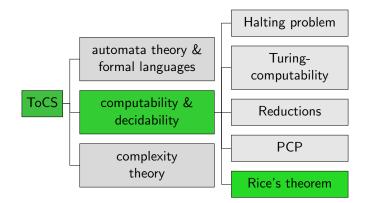
Gabriele Röger

University of Basel

April 24, 2024

Outlook

Content of the Course



Rice's Theorem

• We have shown that the following problems are undecidable:

- halting problem H
- halting problem on empty tape H_0
- \blacksquare post correspondence problem PCP
- Many more results of this type could be shown.
- Instead, we prove a much more general result, Rice's theorem, which shows that a very large class of different problems are undecidable.
- Rice's theorem can be summarized informally as: every non-trivial question about what a given Turing machine computes is undecidable.

Theorem (Rice's Theorem)

Let \mathcal{R} be the class of all computable partial functions. Let S be an arbitrary subset of \mathcal{R} except $S = \emptyset$ or $S = \mathcal{R}$. Then the language

 $C(\mathcal{S}) = \{w \in \{0, 1\}^* \mid \text{the (partial) function computed by } M_w \\ \text{ is in } \mathcal{S}\}$

is undecidable.

Question: why the restriction to $S \neq \emptyset$ and $S \neq R$?

Extension (without proof): in most cases neither C(S) nor $\overline{C(S)}$ is Turing-recognizable. (But there are sets S for which one of the two languages is Turing-recognizable.)

Outlook 000000

Rice's Theorem (3)

Proof.

Let $\boldsymbol{\Omega}$ be the partial function that is undefined everywhere.

Proof.

Let $\boldsymbol{\Omega}$ be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in S$ Let $q \in \mathcal{R} \setminus S$ be an arbitrary computable partial function outside of S (exists because $S \subseteq \mathcal{R}$ and $S \neq \mathcal{R}$).

. . .

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus S$ be an arbitrary computable partial function outside of S (exists because $S \subseteq \mathcal{R}$ and $S \neq \mathcal{R}$).

Let Q be a Turing machine that computes q.

Proof (continued).

We show that $\bar{H}_0 \leq C(S)$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, where f(w) is defined as follows:

- Construct TM *M* that first behaves on input *y* like *M_w* on the empty tape (independently of what *y* is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

Proof (continued).

We show that $\bar{H}_0 \leq C(S)$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, where f(w) is defined as follows:

- Construct TM *M* that first behaves on input *y* like *M_w* on the empty tape (independently of what *y* is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

f is total and computable.

. . .

Outlook

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Proof (continued).

Which function is computed by the TM encoded by f(w)?

 $M_{f(w)} \text{ computes } \begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

. . .

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

 $M_{f(w)} \text{ computes } \begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

For all words $w \in \{0, 1\}^*$:

 $w \in H_0 \Longrightarrow M_w$ terminates on ε

 $\implies M_{f(w)}$ computes the function q

 \implies the function computed by $M_{f(w)}$ is not in ${\mathcal S}$

$$\implies f(w) \notin C(\mathcal{S})$$

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w$ does not terminate on ε

- $\implies M_{f(w)}$ computes the function Ω
- \implies the function computed by $M_{f(w)}$ is in S

 $\implies f(w) \in C(\mathcal{S})$

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w$ does not terminate on ε $\Longrightarrow M_{f(w)}$ computes the function Ω \Longrightarrow the function computed by $M_{f(w)}$ is in S $\Longrightarrow f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Since H_0 is undecidable, \overline{H}_0 is also undecidable.

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Since H_0 is undecidable, \overline{H}_0 is also undecidable.

We can conclude that C(S) is undecidable.

. . .

Proof (continued).

Case 2: $\Omega \notin S$

Analogous to Case 1 but this time choose $q \in S$.

```
The corresponding function f then reduces H_0 to C(S).
```

Thus, it also follows in this case that C(S) is undecidable.

Rice's Theorem: Consequences

Was it worth it?

We can now conclude immediately that (for example) the following informally specified problems are all undecidable:

- Does a given TM compute a constant function?
- Does a given TM compute a total function (i. e. will it always terminate, and in particular terminate in a "correct" configuration)?
- Is the output of a given TM always longer than its input?
- Does a given TM compute the identity function?
- Does a given TM compute the computable function f?

. . .

Does a given TM compute a constant function?

 $S = \{f \mid f \text{ is total and computable and} \\ \text{for all } x, y \text{ in the domain of } f : f(x) = f(y)\}$

 Does a given TM compute a constant function?
 S = {f | f is total and computable and for all x, y in the domain of f : f(x) = f(y)}

Does a given TM compute a total function?
 S = {f | f is total and computable}

- Does a given TM compute a constant function?
 S = {f | f is total and computable and for all x, y in the domain of f : f(x) = f(y)}
- Does a given TM compute a total function?
 S = {f | f is total and computable}
- Does a given TM compute the identity function? $\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$

- Does a given TM compute a constant function?
 S = {f | f is total and computable and for all x, y in the domain of f : f(x) = f(y)}
- Does a given TM compute a total function?
 S = {f | f is total and computable}
- Does a given TM compute the identity function? $\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$
- Does a given TM add two natural numbers? $S = \{f : \mathbb{N}_0^2 \to \mathbb{N}_0 \mid f(x, y) = x + y\}$

- Does a given TM compute a constant function?
 S = {f | f is total and computable and for all x, y in the domain of f : f(x) = f(y)}
- Does a given TM compute a total function?
 S = {f | f is total and computable}
- Does a given TM compute the identity function? $\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$
- Does a given TM add two natural numbers? $S = \{f : \mathbb{N}_0^2 \to \mathbb{N}_0 \mid f(x, y) = x + y\}$
- Does a given TM compute the computable function f? $\mathcal{S} = \{f\}$

(full automization of software verification is impossible)

Rice's Theorem: Pitfalls

 S = {f | f can be computed by a DTM with an even number of states}
 Rice's theorem not applicable because S = R

Rice's Theorem: Pitfalls

Rice's Theorem: Pitfalls

- S = {f | f can be computed by a DTM with an even number of states} Rice's theorem not applicable because S = R
 S = {f : {0,1}* →_p {0,1} | f(w) = 1 iff M_w does not terminate on ε}? Rice's theorem not applicable because S ⊄ R
- Show that {w | M_w traverses all states on every input} is undecidable.

Rice's theorem not directly applicable because not a semantic property (the function computed by M_w can also be computed by a TM that does not traverse all states)

Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:

automated debugging:

- Can a given variable ever receive a null value?
- Can a given assertion in a program ever trigger?
- Can a given buffer ever overflow?
- virus scanners and other software security analysis:
 - Can this code do something harmful?
 - Is this program vulnerable to SQL injections?
 - Can this program lead to a privilege escalation?

optimizing compilers:

- Is this dead code?
- Is this a constant expression?
- Can pointer aliasing happen here?
- Is it safe to parallelize this code path?
- parallel program analysis:
 - Is a deadlock possible here?
 - Can a race condition happen here?

Questions

Outlook 000000 Summary 0000

Questions?

Further Undecidable Problems

And What Else?

- Here we conclude our discussion of undecidable problems.
- Many more undecidable problems exist.
- In this section, we briefly discuss some further classical results.

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

• ... is
$$\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$$
?

• ... is
$$|\mathcal{L}(\mathcal{G}_1) \cap \mathcal{L}(\mathcal{G}_2)| = \infty$$
?

• ... is
$$\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$$
 context-free?

• ... is
$$\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$$
?

• ... is
$$\mathcal{L}(G_1) = \mathcal{L}(G_2)$$
?

Given a context-sensitive grammar G, ...

$$\ldots \text{ is } \mathcal{L}(G) = \emptyset?$$

• ... is
$$|\mathcal{L}(G)| = \infty$$
?

 → all undecidable by reduction from PCP (see Schöning, Chapter 2.8)

Gödel's First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An arithmetic formula is a closed predicate logic formula using

- constant symbols 0 and 1,
- function symbols + and ., and
- equality (=) as the only relation symbols.

It is called true if it is true under the usual interpretation of 0, 1, + and \cdot over $\mathbb{N}_0.$

Example:
$$\forall x \exists y \forall z (((x \cdot y) = z) \land ((1 + x) = (x \cdot y)))$$

Gödel's First Incompleteness Theorem (2)

Gödel's First Incompleteness Theorem

The problem of deciding if a given arithmetic formula is true is undecidable.

Moreover, neither it nor its complement are Turing-recognizable.

As a consequence, there exists no sound and complete proof system for arithmetic formulas.

Questions

Questions?

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

How to Prove Undecidability?

statements on the computed function of a TM/an algorithm

other problems

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

How to Prove Undecidability?

- statements on the computed function of a TM/an algorithm → easiest with Rice' theorem
- other problems

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

How to Prove Undecidability?

- statements on the computed function of a TM/an algorithm → easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
 - \rightarrow usually quite complicated

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

How to Prove Undecidability?

- $\hfill\blacksquare$ statements on the computed function of a TM/an algorithm
 - \rightarrow easiest with Rice' theorem
- other problems
 - directly with the definition of undecidability
 - \rightarrow usually quite complicated
 - reduction from an undecidable problem, e.g.
 - ightarrow halting problem (H)
 - \rightarrow Post correspondence problem (PCP)

What's Next?

contents of this course:

A. background \checkmark

b mathematical foundations and proof techniques

- B. automata theory and formal languages √▷ What is a computation?
- C. Turing computability

▷ What can be computed at all?

D. complexity theory

▷ What can be computed efficiently?

- E. more computability theory
 - > Other models of computability

What's Next?

contents of this course:

A. background \checkmark

b mathematical foundations and proof techniques

- B. automata theory and formal languages √
 ▷ What is a computation?
- C. Turing computability 🗸

▷ What can be computed at all?

D. complexity theory

▷ What can be computed efficiently?

- E. more computability theory
 - > Other models of computability

	Theorem

Quiz

kahoot.it