

C6. Rice's Theorem

Rice's Theorem

Rice's Theorem (1)

- ▶ We have shown that the following problems are undecidable:
 - \blacktriangleright halting problem H
 - \blacktriangleright halting problem on empty tape H_0
 - ▶ post correspondence problem PCP
- Many more results of this type could be shown.
- Instead, we prove a much more general result, Rice's theorem, which shows that a very large class of different problems are undecidable.
- Rice's theorem can be summarized informally as: every non-trivial question about what a given Turing machine computes is undecidable.

Gabriele Röger (University of Basel)

Theory of Computer Science

April 24, 2024

5 / 22

Rice's Theorem

C6. Rice's Theorem

Rice's Theorem (3)

Proof.

Let Ω be the partial function that is undefined everywhere.

Case distinction.

Case 1: $\Omega \in S$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable partial function outside of S (exists because $S \subseteq \mathcal{R}$ and $S \neq \mathcal{R}$).

Let Q be a Turing machine that computes q.

C6. Rice's Theorem

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let \mathcal{R} be the class of all computable partial functions. Let S be an arbitrary subset of \mathcal{R} except $S = \emptyset$ or $S = \mathcal{R}$. Then the language

$$C(S) = \{w \in \{0, 1\}^* \mid the (partial) function computed by M_w \\ is in S\}$$

is undecidable.

Question: why the restriction to $S \neq \emptyset$ and $S \neq \mathcal{R}$?

Extension (without proof): in most cases neither C(S) nor $\overline{C(S)}$ is Turing-recognizable. (But there are sets S for which one of the two languages is Turing-recognizable.)

Gabriele Röger (University of Basel)

C6. Rice's Theorem

Theory of Computer Science

April 24, 2024

6 / 22

Rice's Theorem Rice's Theorem (4) Proof (continued). We show that $\overline{H}_0 \leq C(S)$. Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, where f(w) is defined as follows: \blacktriangleright Construct TM *M* that first behaves on input *y* like M_{W} on the empty tape (independently of what y is). Afterwards (if that computation terminates!) M clears the tape, creates the start configuration of Qfor input y and then simulates Q. \blacktriangleright f(w) is the encoding of this TM M f is total and computable. . . .

Gabriele Röger (University of Basel)

. . .

Rice's Theorem

C6. Rice's Theorem Rice's Theorem Rice's Theorem (5) Proof (continued). Which function is computed by the TM encoded by f(w)? $M_{f(w)} \text{ computes } \begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$ For all words $w \in \{0, 1\}^*$: $w \in H_0 \Longrightarrow M_w$ terminates on ε $\implies M_{f(w)}$ computes the function q \implies the function computed by $M_{f(w)}$ is not in S \implies $f(w) \notin C(S)$. . . Gabriele Röger (University of Basel) Theory of Computer Science April 24, 2024 9 / 22

CG. Rice's Theorem (6) Proof (continued). Further: $w \notin H_0 \Longrightarrow M_w$ does not terminate on ε $\Longrightarrow M_{f(w)}$ computes the function Ω

- \implies the function computed by $M_{f(w)}$ is in ${\mathcal S}$
- $\implies f(w) \in C(\mathcal{S})$
- Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$. Therefore, f is a reduction of $\overline{H_0}$ to C(S). Since H_0 is undecidable, $\overline{H_0}$ is also undecidable. We can conclude that C(S) is undecidable.
- Gabriele Röger (University of Basel)
- Theory of Computer Science

Rice's Theorem

. . .

10 / 22

April 24, 2024

Theory of Computer Science

Theory of Computer Science

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ▶ ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$? $\blacktriangleright \dots \text{ is } |\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty?$
- ▶ ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- $\blacktriangleright \dots \text{ is } \mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)?$
- \blacktriangleright ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Given a context-sensitive grammar G, \ldots

- \blacktriangleright ... is $\mathcal{L}(G) = \emptyset$?
- ▶ ... is $|\mathcal{L}(G)| = \infty$?

 \rightsquigarrow all undecidable by reduction from PCP (see Schöning, Chapter 2.8)

Gabriele Röger (University of Basel)

April 24, 2024 18 / 22

Theory of Computer Science

Theory of Computer Science

C6. Rice's Theorem

Summary

Summary

Rice's theorem:

"In general one cannot determine algorithmically what a given program (or Turing machine) computes."

How to Prove Undecidability?

 \blacktriangleright statements on the computed function of a TM/an algorithm \rightarrow easiest with Rice' theorem

Theory of Computer Science

- other problems
 - \blacktriangleright directly with the definition of undecidability
 - \rightarrow usually quite complicated
 - reduction from an undecidable problem, e.g.
 - \rightarrow halting problem (H)
 - \rightarrow Post correspondence problem (PCP)

April 24, 2024

21 / 22

C6. Rice's Theorem

What's Next?

contents of this course:

22 / 22