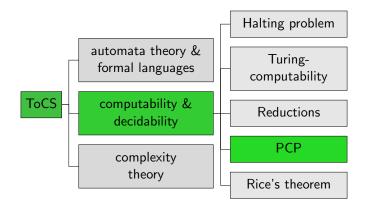
Theory of Computer Science C5. Post Correspondence Problem

Gabriele Röger

University of Basel

April 22, 2024

Content of the Course



More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar 😳

More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- lacksquare both halting problem variants are quite similar igodot
- \rightarrow We want a wider selection for reduction proofs
- \rightarrow Is there some problem that is different in flavor?

More Options for Reduction Proofs?

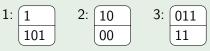
- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- lacksquare both halting problem variants are quite similar igodot
- \rightarrow We want a wider selection for reduction proofs
- \rightarrow Is there some problem that is different in flavor?

Post correspondence problem

(named after mathematician Emil Leon Post)

Example (Post Correspondence Problem)

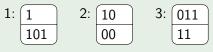
Given: different kinds of "dominos"



(an infinite number of each kind)

Example (Post Correspondence Problem)

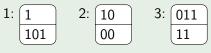
Given: different kinds of "dominos"



(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

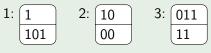


(an infinite number of each kind)

Question: Is there a sequence of dominos such that

Example (Post Correspondence Problem)

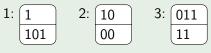
Given: different kinds of "dominos"



(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

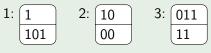


(an infinite number of each kind)

Question: Is there a sequence of dominos such that

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

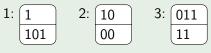


(an infinite number of each kind)

$$\begin{bmatrix}
1 \\
101 \\
1
\end{bmatrix}
\begin{bmatrix}
011 \\
11 \\
3
\end{bmatrix}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

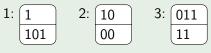


(an infinite number of each kind)

$$\begin{bmatrix}
1 \\
101 \\
1
\end{bmatrix}
\begin{bmatrix}
011 \\
11 \\
3
\end{bmatrix}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

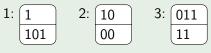


(an infinite number of each kind)

$$\begin{bmatrix}
1 \\
101
\end{bmatrix}
\begin{bmatrix}
011 \\
11
\end{bmatrix}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"



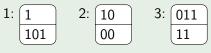
(an infinite number of each kind)

Question: Is there a sequence of dominos such that

$$\begin{array}{c|c}
1 & 011 \\
101 & 11 \\
1 & 3
\end{array}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

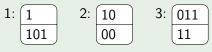


(an infinite number of each kind)

Question: Is there a sequence of dominos such that

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

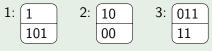


(an infinite number of each kind)

Question: Is there a sequence of dominos such that

Example (Post Correspondence Problem)

Given: different kinds of "dominos"



(an infinite number of each kind)

Question: Is there a sequence of dominos such that

Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words $(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$, where $t_i, b_i \in \Sigma^+$ (for an arbitrary alphabet Σ)

Question: Is there a sequence $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}, n \ge 1,$ with $t_{i_1} t_{i_2} \ldots t_{i_n} = b_{i_1} b_{i_2} \ldots b_{i_n}$?

A solution of the correspondence problem is such a sequence i_1, \ldots, i_n , which we call a match.

Exercise (slido)

Consider PCP instance (11, 1), (0, 00), (10, 01), (01, 11).

Is 2, 4, 3, 3, 1 a match?

Given-Question Form vs. Definition as Set

So far: problems defined as sets Now: definition in Given-Question form

Definition (new problem P)

Given: Instance \mathcal{I} Question: Does \mathcal{I} have a specific property?

Given-Question Form vs. Definition as Set

So far: problems defined as sets Now: definition in Given-Question form

Definition (new problem P)

corresponds to definitions

Definition (new problem P)

The problem P is the language

 $P = \{w \mid w \text{ encodes an instance } \mathcal{I} \text{ with the required property}\}.$

Definition (new problem P)

The problem P is the language $P = \{ \langle \langle \mathcal{I} \rangle \rangle \mid \mathcal{I} \text{ is an instance with the required property} \}.$

PCP Definition as Set

We can alternatively define PCP as follows:

Definition (Post Correspondence Problem PCP)

The Post Correspondence Problem PCP is the set

 $PCP = \{w \mid w \text{ encodes a sequence of pairs of words} \\ (t_1, b_1), (t_2, b_2), \dots, (t_k, b_k), \text{ for which} \\ \text{there is a sequence } i_1, i_2, \dots, i_n \in \{1, \dots, k\} \\ \text{such that } t_{i_1} t_{i_2} \dots t_{i_n} = b_{i_1} b_{i_2} \dots b_{i_n} \}.$

Questions

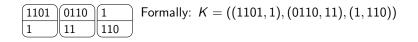
Questions?

(Un-)Decidability of PCP

PCP cannot be so hard, huh?

$\underset{-\text{ Is it?}}{\operatorname{PCP}}$ cannot be so hard, huh?

$\underset{-\text{ Is it?}}{\operatorname{PCP}}$ cannot be so hard, huh?

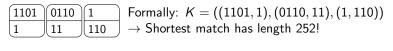


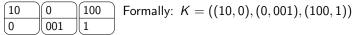
$\underset{-\text{ Is it?}}{\operatorname{PCP}}$ cannot be so hard, huh?

1101	0110	1
1	11	110

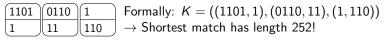
Formally: K = ((1101, 1), (0110, 11), (1, 110)) \rightarrow Shortest match has length 252!

$\underset{-\text{ Is it?}}{\operatorname{PCP}}$ cannot be so hard, huh?





$\underset{-\text{ Is it?}}{\operatorname{PCP}}$ cannot be so hard, huh?



10	0	100	F
0	001	1	_

Formally: K = ((10, 0), (0, 001), (100, 1)) \rightarrow Unsolvable

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)

PCP is Turing-recognizable.

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)

PCP is Turing-recognizable.

Proof.

Recognition procedure for input w:

- If w encodes a sequence (t₁, b₁),..., (t_k, b_k) of pairs of words: Test systematically longer and longer sequences i₁, i₂,..., i_n whether they represent a match. If yes, terminate and return "yes".
- If w does not encode such a sequence: enter an infinite loop.

If $w \in PCP$ then the procedure terminates with "yes", otherwise it does not terminate.

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP)
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP)
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)
- \rightarrow Let's get started. . .

MPCP: Definition

Definition (Modified Post Correspondence Problem MPCP)

Given:	Sequence	of word	pairs	as	for 1	PCP	
--------	----------	---------	-------	----	-------	-----	--

Question: Is there a match $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}$ with $i_1 = 1$?

Lemma

 $\mathrm{MPCP} \leq \mathrm{PCP}.$

Lemma

 $MPCP \le PCP.$

Proof.

Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

 $\bar{w} = \#a_1 \# a_2 \# \dots \# a_m \#$ $\hat{w} = \#a_1 \# a_2 \# \dots \# a_m$ $\hat{w} = a_1 \# a_2 \# \dots \# a_m \#$

. . .

Lemma

 $MPCP \le PCP.$

Proof.

Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

 $\bar{w} = \#a_1 \# a_2 \# \dots \# a_m \#$ $\tilde{w} = \#a_1 \# a_2 \# \dots \# a_m$ $\tilde{w} = a_1 \# a_2 \# \dots \# a_m \#$

For input $C = ((t_1, b_1), \dots, (t_k, b_k))$ define $f(C) = ((\bar{t_1}, \dot{b_1}), (t_1, \dot{b_1}), (t_2, \dot{b_2}), \dots, (t_k, \dot{b_k}), (\$, \#\$))$

. . .

Proof (continued).

 $f(C) = ((\bar{t_1}, \dot{b_1}), (\dot{t_1}, \dot{b_1}), (\dot{t_2}, \dot{b_2}), \dots, (\dot{t_k}, \dot{b_k}), (\$, \#\$))$

Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with $i_1 = 1$ iff f(C) has a solution:

Proof (continued).

 $f(C) = ((\bar{t_1}, \dot{b_1}), (\dot{t_1}, \dot{b_1}), (\dot{t_2}, \dot{b_2}), \dots, (\dot{t_k}, \dot{b_k}), (\$, \#\$))$

Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with $i_1 = 1$ iff f(C) has a solution:

Let $1, i_2, i_3, \ldots, i_n$ be a solution for C. Then $1, i_2 + 1, \ldots, i_n + 1, k + 2$ is a solution for f(C).

Proof (continued).

 $f(C) = ((\bar{t_1}, \dot{b_1}), (\dot{t_1}, \dot{b_1}), (\dot{t_2}, \dot{b_2}), \dots, (\dot{t_k}, \dot{b_k}), (\$, \#\$))$

Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with $i_1 = 1$ iff f(C) has a solution:

```
Let 1, i_2, i_3, \ldots, i_n be a solution for C. Then
1, i_2 + 1, \ldots, i_n + 1, k + 2 is a solution for f(C).
```

If i_1, \ldots, i_n is a match for f(C), then (due to the construction of the word pairs) there is a $m \le n$ such that $i_1 = 1, i_m = k + 2$ and $i_j \in \{2, \ldots, k + 1\}$ for $j \in \{2, \ldots, m - 1\}$. Then $1, i_2 - 1, \ldots, i_{m-1} - 1$ is a solution for C.

Proof (continued).

 $f(C) = ((\bar{t_1}, \dot{b_1}), (\dot{t_1}, \dot{b_1}), (\dot{t_2}, \dot{b_2}), \dots, (\dot{t_k}, \dot{b_k}), (\$, \#\$))$

Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with $i_1 = 1$ iff f(C) has a solution:

```
Let 1, i_2, i_3, \ldots, i_n be a solution for C. Then
1, i_2 + 1, \ldots, i_n + 1, k + 2 is a solution for f(C).
```

If i_1, \ldots, i_n is a match for f(C), then (due to the construction of the word pairs) there is a $m \le n$ such that $i_1 = 1, i_m = k + 2$ and $i_j \in \{2, \ldots, k+1\}$ for $j \in \{2, \ldots, m-1\}$. Then $1, i_2 - 1, \ldots, i_{m-1} - 1$ is a solution for C.

 \Rightarrow f is a reduction from MPCP to PCP.

Questions

Questions?

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP)
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

. . .

Reducibility of H to MPCP(1)

Lemma

 $H \leq MPCP.$

Proof.

Goal: Construct for Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ and word $w \in \Sigma^*$ an MPCP instance $C = ((t_1, b_1), \dots, (t_k, b_k))$ such that

M started on *w* terminates iff $C \in MPCP$.

Х

. . .

Reducibility of H to MPCP(2)

Proof (continued).

Idea:

 Sequence of words describes sequence of configurations of the TM

:
$$\# c_0 \# c_1 \# c_2 \#$$

$$y: \# c_0 \# c_1 \# c_2 \# c_3 \#$$

- Configurations get mostly just copied, only the area around the head changes.
- After a terminating configuration has been reached: make row equal by deleting the configuration.

Reducibility of H to MPCP(3)

Proof (continued).

```
Alphabet of C is \Gamma \cup Q \cup \{\#\}.
```

1. Pair: $(\#, \#q_0w\#)$

Other pairs:

• copy: (a, a) for all $a \in \Gamma \cup \{\#\}$

Itransition:

 $(qa, cq') \text{ if } \delta(q, a) = (q', c, R)$ $(q\#, cq'\#) \text{ if } \delta(q, \Box) = (q', c, R)$

. . .

. . .

Reducibility of H to MPCP(4)

Proof (continued).

$$(bqa, q'bc)$$
 if $\delta(q, a) = (q', c, L)$ for all $b \in \Gamma$
 $(bq\#, q'bc\#)$ if $\delta(q, \Box) = (q', c, L)$ for all $b \in \Gamma$
 $(\#qa, \#q'c)$ if $\delta(q, a) = (q', c, L)$
 $(\#q\#, \#q'c\#)$ if $\delta(q, \Box) = (q', c, L)$

Reducibility of H to MPCP(5)

Proof (continued).

" \Rightarrow " If *M* terminates on input *w*, there is a sequence c_0, \ldots, c_t of configurations with

- $c_0 = q_0 w$ is the start configuration
- c_t is a terminating configuration ($c_t = uqv$ mit $u, v \in \Gamma^*$ and $q \in \{q_{accept}, q_{reject}\}$)

•
$$c_i \vdash c_{i+1}$$
 for $i = 0, 1, ..., t-1$

. . .

Reducibility of H to MPCP(5)

Proof (continued).

" \Rightarrow " If *M* terminates on input *w*, there is a sequence c_0, \ldots, c_t of configurations with

• $c_0 = q_0 w$ is the start configuration

•
$$c_t$$
 is a terminating configuration
($c_t = uqv$ mit $u, v \in \Gamma^*$ and $q \in \{q_{\text{accept}}, q_{\text{reject}}\}$)

•
$$c_i \vdash c_{i+1}$$
 for $i = 0, 1, ..., t - 1$

Then C has a match with the overall word

$$\#c_0 \#c_1 \# \dots \# c_t \# c_t' \# c_t'' \# \dots \# q_e \# \#$$

Up to c_t: "'t-row"' follows "'b-row"'

From c'_t : deletion of symbols adjacent to terminating state.

Reducibility of H to MPCP(6)

Proof (continued).

" \Leftarrow " If C has a solution, it has the form

 $#c_0#c_1#\ldots#c_n##,$

with $c_0 = q_0 w$. Moreover, there is an $\ell \le n$, such that q_{accept} or q_{reject} occurs for the first time in c_{ℓ} . All c_i for $i \le \ell$ are configurations of M and $c_i \vdash c_{i+1}$ for $i \in \{0, \ldots, \ell - 1\}$. c_0, \ldots, c_{ℓ} is hence the sequence of configurations of M on input w, which shows that the TM terminates.

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **2** Reduce halting problem to MPCP ($H \leq MPCP$) \checkmark

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **2** Reduce halting problem to MPCP ($H \leq MPCP$) \checkmark

Proof.

Due to $H \leq MPCP$ and $MPCP \leq PCP$ it holds that $H \leq PCP$. Since H is undecidable, also PCP must be undecidable.

Questions

Questions?

Summary

Summary

Post Correspondence Problem:

Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components.

The Post Correspondence Problem is Turing-recognizable but not decidable.