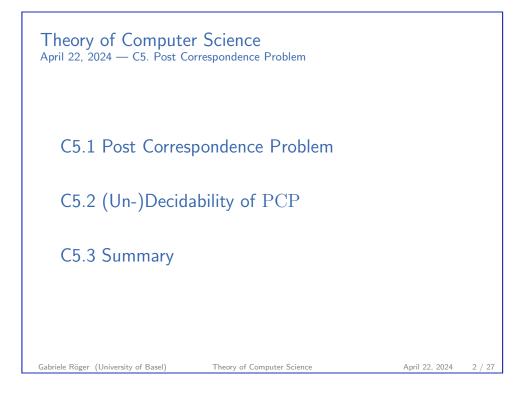


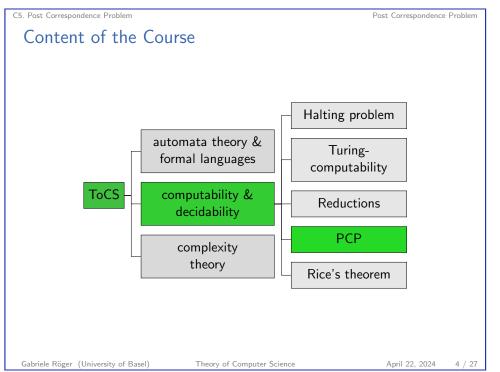
cs. Post Correspondence Problem C5.1 Post Correspondence Problem

Theory of Computer Science

April 22, 2024

3 / 27





C5. Post Correspondence Problem Post Correspondence Problem C5. Post Correspondence Problem Post Correspondence Problem More Options for Reduction Proofs? Post Correspondence Problem: Example Example (Post Correspondence Problem) ▶ We can prove the undecidability of a problem with a reduction Given: different kinds of "dominos" from an undecidable problem. ▶ The halting problem and the halting problem on the empty 1: 1 10 3: 011 2: tape are possible options for this. 101 00 11 ▶ both halting problem variants are quite similar ☺ (an infinite number of each kind) \rightarrow We want a wider selection for reduction proofs Question: Is there a sequence of dominos such that \rightarrow Is there some problem that is different in flavor? the upper and lower row match (= are equal) Post correspondence problem 011 10 011 (named after mathematician Emil Leon Post) 11 00 11 101 2 3 3 1 Gabriele Röger (University of Basel) Theory of Computer Science April 22, 2024 5 / 27 Gabriele Röger (University of Basel) Theory of Computer Science April 22, 2024 6 / 27 C5. Post Correspondence Problem Post Correspondence Problem C5. Post Correspondence Problem Post Correspondence Problem Post Correspondence Problem: Definition Exercise (slido) Definition (Post Correspondence Problem PCP) Given: Finite sequence of pairs of words Consider PCP instance (11, 1), (0, 00), (10, 01), (01, 11).

Finite sequence of pairs of words $(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$, where $t_i, b_i \in \Sigma^+$ (for an arbitrary alphabet Σ)

Question: Is there a sequence $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}, n \ge 1,$ with $t_{i_1} t_{i_2} \ldots t_{i_n} = b_{i_1} b_{i_2} \ldots b_{i_n}$?

A solution of the correspondence problem is such a sequence i_1, \ldots, i_n , which we call a match.

Is 2, 4, 3, 3, 1 a match?

Given-Question Form vs. Definition as Set

So far: problems defined as sets Now: definition in Given-Question form

Definition (new problem P)

corresponds to definitions

Definition (new	<i>w</i> problem P)
The problem I	P is the language
$\mathbf{P} = \{ w \mid w \text{ er} \}$	ncodes an instance ${\mathcal I}$ with the required property}.
Definition (new	w problem P)

The problem P is the language $P = \{ \langle\!\langle \mathcal{I} \rangle\!\rangle \mid \mathcal{I} \text{ is an instance with the required property} \}.$

Gabriele Röger (University of Basel)

Theory of Computer Science

C5. Post Correspondence Problem

(Un-)Decidability of PCP

April 22, 2024

9 / 27

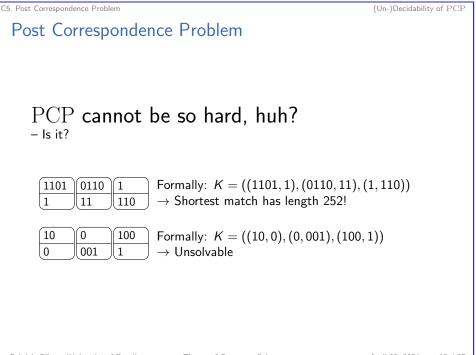
C5.2 (Un-)Decidability of PCP

C5.	Post	Correspondence	Problem	

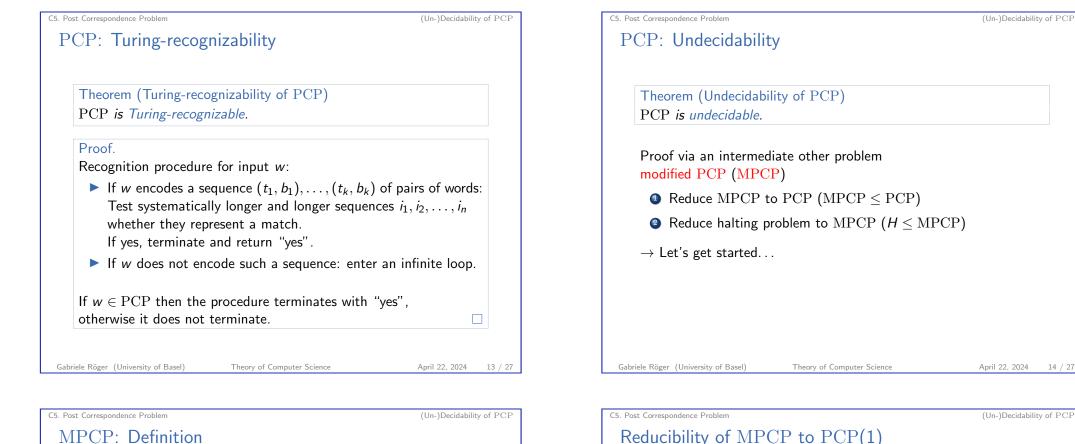
PCP Definition as Set

We can alternatively define PCP as follows:

PCP =	encodes a sequence o b_1 , (t_2, b_2) ,, (t_k, b_1)			
	re is a sequence i_1, i_2			
	h that $t_{i_1}t_{i_2}\ldots t_{i_n}=1$, אן	
	$11 n_2 m$	- 1 <u>1</u> - 1 <u>2</u> - 111 5		



Post Correspondence Problem



Lemma

MPCP < PCP.

Proof.

Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

 $\bar{w} = \#a_1 \# a_2 \# \dots \# a_m \#$ $\dot{w} = \#a_1 \#a_2 \# \#a_m$ ŵ:

For input $C = ((t_1, b_1), \dots, (t_k, b_k))$ define $f(C) = ((\bar{t}_1, \dot{b}_1), (t_1, \dot{b}_1), (t_2, \dot{b}_2), \dots, (t_k, \dot{b}_k), (\$, \#\$))$

Theory of Computer Science

. . .

Theory of Computer Science

Definition (Modified Post Correspondence Problem MPCP)

Given: Sequence of word pairs as for PCP

with $i_1 = 1$?

Question: Is there a match $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}$

```
April 22, 2024
     15 / 27
```

$$y = a_1 \# a_2 \# \dots \# a_m \#$$

(Un-)Decidability of PCP

14 / 27

(Un-)Decidability of PCP

Reducibility of MPCP to PCP(2)

Proof (continued). $f(C) = ((\bar{t}_1, \dot{b}_1), (t_1, \dot{b}_1), (t_2, \dot{b}_2), \dots, (t_k, \dot{b}_k), (\$, \#\$))$

Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with $i_1 = 1$ iff f(C) has a solution:

Let $1, i_2, i_3, \ldots, i_n$ be a solution for C. Then $1, i_2 + 1, \dots, i_n + 1, k + 2$ is a solution for f(C).

If i_1, \ldots, i_n is a match for f(C), then (due to the construction of the word pairs) there is a $m \le n$ such that $i_1 = 1, i_m = k + 2$ and $i_i \in \{2, \dots, k+1\}$ for $j \in \{2, \dots, m-1\}$. Then $1, i_2 - 1, \dots, i_{m-1} - 1$ is a solution for C.

Theory of Computer Science

 \Rightarrow f is a reduction from MPCP to PCP.

Gabriele Röger (University of Basel)

April 22, 2024

17 / 27

(Un-)Decidability of PCP

C5. Post Correspondence Problem Reducibility of *H* to MPCP(1)

> Lemma H < MPCP.

Proof.

Goal: Construct for Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}} \rangle$ and word $w \in \Sigma^*$ an MPCP instance $C = ((t_1, b_1), \dots, (t_k, b_k))$ such that

M started on *w* terminates iff $C \in MPCP$.

Theorem (Undecidability of PCP) PCP is undecidable. Proof via an intermediate other problem modified PCP (MPCP) **1** Reduce MPCP to PCP (MPCP < PCP) \checkmark 2 Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Where are we?

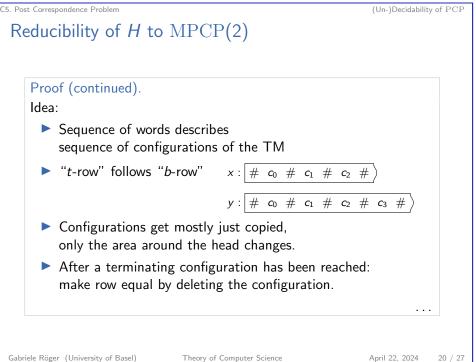
Gabriele Röger (University of Basel)

C5. Post Correspondence Problem

April 22, 2024

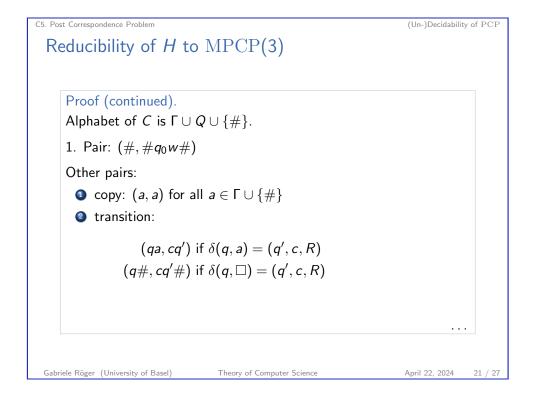
18 / 27

(Un-)Decidability of PCP



Theory of Computer Science

. . .



C5. Post Correspondence Problem

(Un-)Decidability of PCP

. . .

23 / 27

```
Reducibility of H to MPCP(5)
```

Proof (continued).

" \Rightarrow " If M terminates on input w, there is a sequence c_0, \ldots, c_t of configurations with

- \triangleright $c_0 = q_0 w$ is the start configuration
- \triangleright c_t is a terminating configuration $(c_t = uqv \text{ mit } u, v \in \Gamma^* \text{ and } q \in \{q_{\text{accept}}, q_{\text{reject}}\})$
- ▶ $c_i \vdash c_{i+1}$ for i = 0, 1, ..., t 1

Then C has a match with the overall word

$$\#c_0\#c_1\#\ldots\#c_t\#c_t'\#c_t''\#\ldots\#q_e\#\#$$

Theory of Computer Science

Up to c_t : "'t-row"' follows "'b-row"'

From c'_t : deletion of symbols adjacent to terminating state.

(Un-)Decidability of PCF

(4)

Proof (continued).

(bga, g'bc) if $\delta(g, a) = (g', c, L)$ for all $b \in \Gamma$ (bq#, q'bc#) if $\delta(q, \Box) = (q', c, L)$ for all $b \in \Gamma$ (#aa, #a'c) if $\delta(a, a) = (a', c, L)$ (#a#, #a'c#) if $\delta(q, \Box) = (q', c, L)$

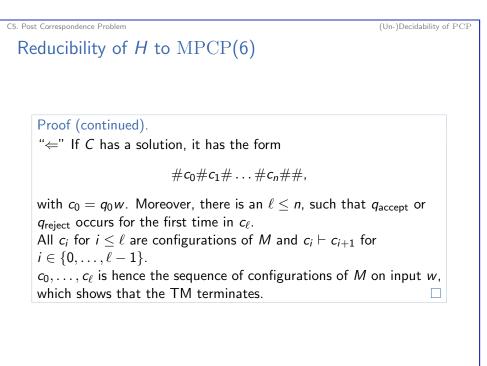
 \bigcirc deletion: (aq, q) and (qa, q)for all $a \in \Gamma$ and $q \in \{q_{\text{accent}}, q_{\text{reject}}\}$ • finish: (q##, #) for all $q \in \{q_{\text{accept}}, q_{\text{reject}}\}$

Gabriele Röger (University of Basel)

Theory of Computer Science

April 22, 2024 22 / 27

. . .



Gabriele Röger (University of Basel)

PCP: Undecidability – Done!

Theorem	(Undecidability of PCP)
PCP is u	ndecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark

Proof. Due to $H \leq MPCP$ and $MPCP \leq PCP$ it holds that $H \leq PCP$. Since H is undecidable, also PCP must be undecidable.

Gabriele Röger (University of Basel)

Theory of Computer Science April 22, 2024

C5. Post Correspondence Problem Summary ▶ Post Correspondence Problem: Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components. ► The Post Correspondence Problem is Turing-recognizable but not decidable.

C5. Post Correspondence Problem			Summary
C5.3 Summa			
	ii y		
Gabriele Röger (University of Basel)	Theory of Computer Science	April 22, 2024	26 / 27

(Un-)Decidability of PCP

25 / 27

Summarv