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C4. Reductions Introduction

C4.1 Introduction
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C4. Reductions Introduction

What We Achieved So Far: Discussion

▶ We already know a concrete undecidable problem.
→ halting problem

▶ We will see that we can derive further
undecidability results from the undecidability
of the halting problem.

▶ The central notion for this is reducing
one problem to another problem.
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C4. Reductions Introduction

Illustration

def is_odd(some_number):

n = some_number + 1

return is_even(n)

▶ Decides whether a given number is odd based on. . .

▶ an algorithm that determines whether a number is even.
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C4. Reductions Introduction

Reduction: Idea (slido)

Assume that you have an algorithm that solves problem A
relying on a hypothetical algorithm for problem B.

def is_in_A(input_A):

input_B = <compute suitable instance based on input_A>

return is_in_B(input_B)

What (if anything) can you conclude

1 if there indeed is an algorithm for problem A?

2 if there indeed is an algorithm for problem B?

3 if problem A is undecidable?

4 if problem B is undecidable?
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C4. Reductions Reduction

C4.2 Reduction
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C4. Reductions Reduction

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

Halting problem

Turing-
computability

Reductions

PCP

Rice’s theorem

complexity
theory
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C4. Reductions Reduction

Reduction: Definition

Definition (Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be languages, and let f : Σ∗ → Γ∗

be a total and computable function such that for all x ∈ Σ∗:

x ∈ A if and only if f (x) ∈ B.

Then we say that A can be reduced to B (in symbols: A ≤ B),
and f is called a reduction from A to B.
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C4. Reductions Reduction

Reduction Property

Theorem (Reductions vs. Turing-recognizability/Decidability)

Let A and B be languages with A ≤ B. Then:

1 If B is decidable, then A is decidable.

2 If B is Turing-recognizable, then A is Turing-recognizable.

3 If A is not decidable, then B is not decidable.

4 If A is not Turing-recognizable, then B is not
Turing-recognizable.

⇝ In the following, we use 3. to show undecidability

⇝

for further problems.
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C4. Reductions Reduction

Reduction Property: Proof

Proof.
for 1.: If B is decidable then there is a DTM MB that decides B.
The following algorithm decides A using reduction f from A to B.

On input x :

1 y := f (x)

2 Simulate MB on input y . This simulation terminates.

3 If MB accepted y , accept. Otherwise reject.

for 2.: identical to (1), only that MB only recognizes B and
therefore the simulation does not necessarily terminate if y ̸∈ B.
Since y ̸∈ B iff x ̸∈ A, the procedure still recognizes A.

for 3./4.: contrapositions of 1./2. ⇝ logically equivalent
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C4. Reductions Reduction

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation “≤” is a preorder:

1 For all languages A:
A ≤ A (reflexivity)

2 For all languages A, B, C:
If A ≤ B and B ≤ C, then A ≤ C (transitivity)
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C4. Reductions Reduction

Reductions are Preorders: Proof

Proof.

for 1.: The function f (x) = x is a reduction from A to A
because it is total and computable and x ∈ A iff f (x) ∈ A.

for 2.: ⇝ exercises
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C4. Reductions Halting Problem on Empty Tape

C4.3 Halting Problem on Empty
Tape
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C4. Reductions Halting Problem on Empty Tape

Example

As an example

▶ we will consider problem H0, a variant of the halting problem,

▶ . . . and show that it is undecidable

▶ . . . reducing H to H0.
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C4. Reductions Halting Problem on Empty Tape

Reminder: Halting Problem

Definition (Halting Problem)

The halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

H0 = {w ∈ {0, 1}∗ | Mw started on ε terminates}.

Note: H0 is Turing-recognizable. (Why?)
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (2)

Theorem (Undecidability of Halting Problem on Empty Tape)

The halting problem on the empty tape is undecidable.

Proof.
We show H ≤ H0.

Consider the function f : {0, 1, #}∗ → {0, 1}∗
that computes the word f (z) for a given z ∈ {0, 1, #}∗ as follows:

▶ Test if z has the form w#x with w , x ∈ {0, 1}∗.
▶ If not, return any word that is not in H0

(e. g., encoding of a TM that instantly starts an endless loop).

▶ If yes, split z into w and x .

▶ Decode w to a TM M2.

. . .
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C4. Reductions Halting Problem on Empty Tape

Halting Problem on Empty Tape (3)

Proof (continued).
▶ Construct a TM M1 that behaves as follows:

▶ If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x ̸= ε); then stop

▶ otherwise, stop immediately

▶ Construct TM M that first runs M1 and then M2.
→ M started on empty tape simulates M2 on input x .

▶ Return the encoding of M.

f is total and (with some effort) computable. Also:

z ∈ H iff z = w#x and Mw run on x terminates

iff Mf (z) started on empty tape terminates

iff f (z) ∈ H0

⇝ H ≤ H0 ⇝ H0 undecidable
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C4. Reductions Summary

Summary

▶ reductions: “embedding” a problem as a special case
of another problem

▶ important method for proving undecidability:
reduce from a known undecidable problem to a new problem
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