Theory of Computer Science C3. Turing-Computability

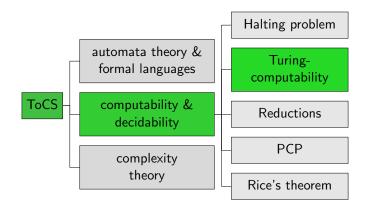
Gabriele Röger

University of Basel

April 17, 2024

Decidability vs. Computability

Content of the Course



Turing-Computable Functions

Hello World

def hello_world(name):
 return "Hello " + name + "!"

Hello World

def hello_world(name):
 return "Hello " + name + "!"

When calling hello_world("Florian") we get the result "Hello Florian!".

How could a Turing machine output a string as the result of a computation?

Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense can be computed by a Turing machine.

 Talks about arbitrary functions that can be computed in the intutive sense.

Church-Turing Thesis

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?

Church-Turing Thesis

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?
- We now will consider function values beyond yes or no (accept or reject).

Church-Turing Thesis

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?
- We now will consider function values beyond yes or no (accept or reject).
- $\blacksquare \Rightarrow$ consider the tape content when the TM accepted.

Computation

In the following we investigate
models of computation for partial functions f : N₀^k →_p N₀.
no real limitation: arbitrary information
can be encoded as numbers

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

- configuration: $\langle \alpha, q, \beta \rangle$ with $\alpha \in \Gamma^*$, $q \in Q$, $\beta \in \Gamma^+$
- one computation step: $c \vdash c'$ if one computation step can turn configuration c into configuration c'
- multiple computation steps: c ⊢* c' if 0 or more computation steps can turn configuration c into configuration c'
 (c = c₀ ⊢ c₁ ⊢ c₂ ⊢ ··· ⊢ c_{n-1} ⊢ c_n = c', n ≥ 0)

(Definition of \vdash , i.e., how a computation step changes the configuration, is not repeated here. \rightsquigarrow Chapter B11)

Computation of Functions?

How can a DTM compute a function?

- "Input" x is the initial tape content.
- "Output" f(x) is the tape content (ignoring blanks at the right) when reaching the accept state.
- If the TM stops in the reject state or does not stop for the given input, f(x) is undefined for this input.

Which kinds of functions can be computed this way?

- directly, only functions on words: $f: \Sigma^* \rightarrow_p \Sigma^*$
- interpretation as functions on numbers f : N^k₀ →_p N₀: encode numbers as words

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)

A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ computes the (partial) function $f : \Sigma^* \to_p \Sigma^*$ for which for all $x, y \in \Sigma^*$:

$$f(x) = y \text{ iff } \langle \varepsilon, q_0, x \rangle \vdash^* \langle \varepsilon, q_{\mathsf{accept}}, y \Box \dots \Box \rangle.$$

(special case: initial configuration $\langle \varepsilon, q_0, \Box \rangle$ if $x = \varepsilon$)

- What happens if the computation does not reach q_{accept}?
- What happens if symbols from $\Gamma \setminus \Sigma$ (e.g., \Box) occur in *y*?
- What happens if the read-write head is not at the first tape cell when accepting?
- Is f uniquely defined by this definition? Why?

Turing-Computable Functions on Words

Definition (Turing-Computable, $f : \Sigma^* \rightarrow_p \Sigma^*$)

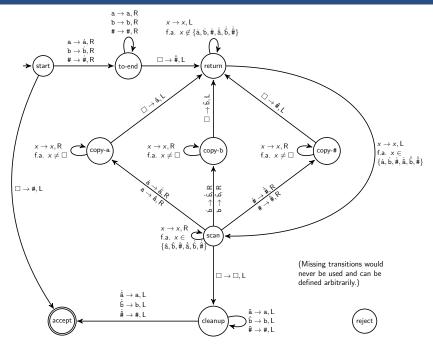
A (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ is called Turing-computable if a DTM that computes f exists.

Example: Turing-Computable Functions on Words

Example

Let
$$\Sigma = \{a, b, \#\}$$
.
The function $f : \Sigma^* \rightarrow_p \Sigma^*$ with $f(w) = w \# w$ for all $w \in \Sigma^*$ is Turing-computable.

Idea: \rightsquigarrow blackboard



Turing-Computable Functions

Decidability vs. Computability 0000 Summary 00

Questions

Questions?

Turing-Computable Numerical Functions

- We now transfer the concept to partial functions $f : \mathbb{N}_0^k \to_p \mathbb{N}_0.$
- Idea:
 - To represent a number as a word, we use its binary representation (= a word over {0,1}).
 - To represent tuples of numbers, we separate the binary representations with symbol #.
- For example: (5, 2, 3) becomes 101#10#11

Encoding Numbers as Words

Definition (Encoded Function)

Let $f : \mathbb{N}_0^k \to_{p} \mathbb{N}_0$ be a (partial) function. The encoded function f^{code} of f is the partial function $f^{\text{code}}: \Sigma^* \to_p \Sigma^*$ with $\Sigma = \{0, 1, \#\}$ and $f^{\text{code}}(w) = w'$ iff • there are $n_1, \ldots, n_k, n' \in \mathbb{N}_0$ such that • $f(n_1, \ldots, n_k) = n'$, • $w = bin(n_1) # \dots # bin(n_k)$ and • w' = bin(n'). Here $bin : \mathbb{N}_0 \to \{0, 1\}^*$ is the binary encoding (e.g., bin(5) = 101).

Example: f(5,2,3) = 4 corresponds to $f^{code}(101\#10\#11) = 100$.

Turing-Computable Numerical Functions

Definition (Turing-Computable, $f : \mathbb{N}_0^k \rightarrow_p \mathbb{N}_0$)

A (partial) function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ is called Turing-computable if a DTM that computes f^{code} exists.

Exercise

- The addition of natural numbers $+ : \mathbb{N}_0^2 \to \mathbb{N}_0$ is Turing-computable. You have a TM *M* that computes $+^{code}$. You want to use *M* to compute the sum 3 + 2.
- What is your input to M?

Example: Turing-Computable Numerical Function

Example

The following numerical functions are Turing-computable:

•
$$succ : \mathbb{N}_0 \to_p \mathbb{N}_0$$
 with $succ(n) := n + 1$
• $pred_1 : \mathbb{N}_0 \to_p \mathbb{N}_0$ with $pred_1(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ 0 & \text{if } n = 0 \end{cases}$
• $pred_2 : \mathbb{N}_0 \to_p \mathbb{N}_0$ with $pred_2(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ \text{undefined} & \text{if } n = 0 \end{cases}$

Example: Turing-Computable Numerical Function

Example

The following numerical functions are Turing-computable:

succ:
$$\mathbb{N}_0 \rightarrow_p \mathbb{N}_0$$
 with $succ(n) := n + 1$
pred₁: $\mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ with $pred_1(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ 0 & \text{if } n = 0 \end{cases}$
pred₂: $\mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ with $pred_2(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ \text{undefined} & \text{if } n = 0 \end{cases}$

How does incrementing and decrementing binary numbers work?

Successor Function

The Turing machine for succ works as follows:

(Details of marking the first tape position ommitted)

- Check that the input is a valid binary number:
 - If the input is not a single symbol 0 but starts with a 0, reject.
 - If the input contains symbol #, reject.
- Ø Move the head onto the last symbol of the input.
- While you read a 1 and you are not at the first tape position, replace it with a 0 and move the head one step to the left.
- Oppending on why the loop in stage 3 terminated:
 - If you read a 0, replace it with a 1, move the head to the left end of the tape and accept.
 - If you read a 1 at the first tape position, move every non-blank symbol on the tape one position to the right, write a 1 in the first tape position and accept.

Predecessor Function

The Turing machine for $pred_1$ works as follows:

(Details of marking the first tape position ommitted)

- Check that the input is a valid binary number (as for *succ*).
- If the (entire) input is 0 or 1, write a 0 and accept.
- Move the head onto the last symbol of the input.
- While you read symbol 0 replace it with 1 and move left.
- \bigcirc Replace the 1 with a 0.
- If you are on the first tape cell, eliminate the trailing 0 (moving all other non-blank symbols one position to the left).
- Ø Move the head to the first position and accept.

Predecessor Function

The Turing machine for $pred_1$ works as follows:

(Details of marking the first tape position ommitted)

- Check that the input is a valid binary number (as for *succ*).
- If the (entire) input is 0 or 1, write a 0 and accept.
- Move the head onto the last symbol of the input.
- While you read symbol 0 replace it with 1 and move left.
- \bigcirc Replace the 1 with a 0.
- If you are on the first tape cell, eliminate the trailing 0 (moving all other non-blank symbols one position to the left).
- Ø Move the head to the first position and accept.

What do you have to change to get a TM for $pred_2$?

More Turing-Computable Numerical Functions

Example

 \sim

The following numerical functions are Turing-computable:

add:
$$\mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$$
 with $add(n_1, n_2) := n_1 + n_2$
sub: $\mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $sub(n_1, n_2) := \max\{n_1 - n_2, 0\}$
mul: $\mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $mul(n_1, n_2) := n_1 \cdot n_2$
div: $\mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $div(n_1, n_2) := \begin{cases} \left\lceil \frac{n_1}{n_2} \right\rceil & \text{if } n_2 \neq 0 \\ \text{undefined} & \text{if } n_2 = 0 \end{cases}$
sketch?

Turing-Computable Functions

Decidability vs. Computabili 0000 Summary 00

Questions

Questions?

Decidability vs. Computability

Decidability as Computability

Theorem

A language $L \subseteq \Sigma^*$ is decidable iff $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

Decidability as Computability

Theorem

A language $L \subseteq \Sigma^*$ is decidable iff $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape. If *M* rejects, *M*' writes a 0 on the tape. Afterwards *M*' accepts.

Decidability as Computability

Theorem

A language $L \subseteq \Sigma^*$ is decidable iff $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape. If *M* rejects, *M*' writes a 0 on the tape. Afterwards *M*' accepts. " \Leftarrow " Let *C* be a DTM that computes χ_L . Construct a DTM *C*' that simulates *C* on the input. If the output of *C* is 1 then *C*' accepts, otherwise it rejects.

Turing-recognizable Languages and Computability

Theorem

A language $L \subseteq \Sigma^*$ is Turing-recognizable iff the following function $\chi'_L : \Sigma^* \to_p \{0, 1\}$ is computable. Here, for all $w \in \Sigma^*$:

$$\chi'_L(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
otin L \end{cases}$$

Turing-recognizable Languages and Computability

Theorem

A language $L \subseteq \Sigma^*$ is Turing-recognizable iff the following function $\chi'_L : \Sigma^* \rightarrow_p \{0, 1\}$ is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L'(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
otin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape and accepts. Otherwise it enters an infinite loop.

Turing-recognizable Languages and Computability

Theorem

A language $L \subseteq \Sigma^*$ is Turing-recognizable iff the following function $\chi'_L : \Sigma^* \rightarrow_p \{0, 1\}$ is computable.

Here, for all $w \in \Sigma^*$:

$$\chi'_L(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
otin L \end{cases}$$

Proof sketch.

" \Rightarrow " Let *M* be a DTM for *L*. Construct a DTM *M*' that simulates *M* on the input. If *M* accepts, *M*' writes a 1 on the tape and accepts. Otherwise it enters an infinite loop. " \Leftarrow " Let *C* be a DTM that computes χ'_{I} . Construct a DTM *C*'

" \Leftarrow " Let C be a DTM that computes χ'_L . Construct a DTM C' that simulates C on the input. If C accepts with output 1 then C' accepts, otherwise it enters an infinite loop.

Turing-Computable Functions

Decidability vs. Computability

Summary 00

Questions

Questions?

Decidability vs. Computability

Summary

Summary

- Turing-computable function f : Σ* →_p Σ*: there is a DTM that transforms every input w ∈ Σ* into the output f(w) (undefined if DTM does not stop or stops in invalid configuration)
- Turing-computable function f : N^k₀ →_p N₀: ditto; numbers encoded in binary and separated by #