Theory of Computer Science
C3. Turing-Computability

Gabriele Röger

University of Basel
April 17, 2024

Theory of Computer Science
April 17, 2024 - C3. Turing-Computability

C3.1 Turing-Computable Functions

C3.2 Decidability vs. Computability

C3.3 Summary

Content of the Course

C3. Turing-Computability	Turing-Computable Functions
C3.1 Turing-Computable Functions	
Gabriele Röger (University of Basel)	

```
def hello_world(name):
```

 return "Hello " + name + "!"
 When calling hello_world("Florian") we get the result "Hello Florian!".

How could a Turing machine output a string as the result of a computation?

Church-Turing Thesis

All functions that can be computed in the intuitive sense can be computed by a Turing machine.

- Talks about arbitrary functions that can be computed in the intutive sense.
- So far, we have only considered recognizability and decidability: Is a word in a language, yes or no?
- We now will consider function values beyond yes or no (accept or reject).
- \Rightarrow consider the tape content when the TM accepted.

C3. Turing-Computability
Computation
In the following we investigate models of computation for partial functions $f: \mathbb{N}_{0}^{k} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$. no real limitation: arbitrary information can be encoded as numbers

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

- configuration: $\langle\alpha, q, \beta\rangle$ with $\alpha \in \Gamma^{*}, q \in Q, \beta \in \Gamma^{+}$
- one computation step: $c \vdash c^{\prime}$ if one computation step can turn configuration c into configuration c^{\prime}
- multiple computation steps: $c \vdash^{*} c^{\prime}$ if 0 or more computation steps can turn configuration c into configuration c^{\prime} $\left(c=c_{0} \vdash c_{1} \vdash c_{2} \vdash \cdots \vdash c_{n-1} \vdash c_{n}=c^{\prime}, n \geq 0\right)$
(Definition of \vdash, i.e., how a computation step changes the configuration, is not repeated here. \rightsquigarrow Chapter B11)

How can a DTM compute a function？
－＂Input＂x is the initial tape content．
－＂Output＂$f(x)$ is the tape content（ignoring blanks at the right）when reaching the accept state．
－If the TM stops in the reject state or does not stop for the given input，$f(x)$ is undefined for this input．

Which kinds of functions can be computed this way？
－directly，only functions on words：$f: \Sigma^{*} \rightarrow_{\mathrm{p}} \Sigma^{*}$
－interpretation as functions on numbers $f: \mathbb{N}_{0}^{k} \rightarrow_{p} \mathbb{N}_{0}$ ： encode numbers as words

Turing Machines：Computed Function

Definition（Function Computed by a Turing Machine）

A DTM $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right\rangle$ computes the（partial）
function $f: \Sigma^{*} \rightarrow_{\mathrm{p}} \Sigma^{*}$ for which for all $x, y \in \Sigma^{*}$ ：

$$
f(x)=y \text { iff }\left\langle\varepsilon, q_{0}, x\right\rangle \vdash^{*}\left\langle\varepsilon, q_{\text {accept }}, y \square \ldots \square\right\rangle
$$

（special case：initial configuration $\left\langle\varepsilon, q_{0}, \square\right\rangle$ if $x=\varepsilon$ ）
－What happens if the computation does not reach $q_{\text {accept }}$ ？
－What happens if symbols from $\Gamma \backslash \Sigma$（e．g．，\square ）occur in y ？
－What happens if the read－write head is not at the first tape cell when accepting？
－Is f uniquely defined by this definition？Why？

Example：Turing－Computable Functions on Words

Example

Let $\Sigma=\{\mathrm{a}, \mathrm{b}, \#\}$ ．
The function $f: \Sigma^{*} \rightarrow_{\mathrm{p}} \Sigma^{*}$ with $f(w)=w \# w$ for all $w \in \Sigma^{*}$
is Turing－computable．

Idea：\rightsquigarrow blackboard

```
Definition (Turing-Computable, f: 洼䖝 洼)
```



```
    if a DTM that computes f exists.
```


Turing-Computable Numerical Functions

- We now transfer the concept to partial functions $f: \mathbb{N}_{0}^{k} \rightarrow_{p} \mathbb{N}_{0}$.
- Idea:
- To represent a number as a word, we use its binary representation (= a word over $\{0,1\}$)
- To represent tuples of numbers, we separate the binary representations with symbol \#.
- For example: $(5,2,3)$ becomes 101\#10\#11
C3. Turing-Computability \quad Turing-Computable Functions

Encoding Numbers as Words

Turing-Computable Numerical Functions

Definition (Encoded Function)

Let $f: \mathbb{N}_{0}^{k} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ be a (partial) function.
The encoded function $f^{\text {code }}$ of f is the partial function
$f^{\text {code }}: \Sigma^{*} \rightarrow_{\mathrm{p}} \Sigma^{*}$ with $\Sigma=\{0,1, \#\}$ and $f^{\text {code }}(w)=w^{\prime}$ iff

- there are $n_{1}, \ldots, n_{k}, n^{\prime} \in \mathbb{N}_{0}$ such that
- $f\left(n_{1}, \ldots, n_{k}\right)=n^{\prime}$,
- $w=\operatorname{bin}\left(n_{1}\right) \# \ldots \# \operatorname{bin}\left(n_{k}\right)$ and
- $w^{\prime}=\operatorname{bin}\left(n^{\prime}\right)$.

Here bin : $\mathbb{N}_{0} \rightarrow\{0,1\}^{*}$ is the binary encoding
(e.g., $\operatorname{bin}(5)=101$).

Example: $f(5,2,3)=4$ corresponds to $f^{\text {code }}(101 \# 10 \# 11)=100$.

Exercise

The addition of natural numbers $+: \mathbb{N}_{0}^{2} \rightarrow \mathbb{N}_{0}$ is Turing-computable. You have a TM M that computes $+{ }^{\text {code }}$.
You want to use M to compute the sum $3+2$.
What is your input to M ?

Successor Function

The Turing machine for succ works as follows:
(Details of marking the first tape position ommitted)
(1) Check that the input is a valid binary number:

- If the input is not a single symbol 0 but starts with a 0 , reject.
- If the input contains symbol \#, reject.
(3) Move the head onto the last symbol of the input.
- While you read a 1 and you are not at the first tape position, replace it with a 0 and move the head one step to the left.
(9) Depending on why the loop in stage 3 terminated:
- If you read a 0 , replace it with a 1 , move the head to the left end of the tape and accept
- If you read a 1 at the first tape position, move every non-blank symbol on the tape one position to the right, write a 1 in the first tape position and accept.

C3. Turing-Computability
Turing-Computable Functions

Example: Turing-Computable Numerical Function

Example

The following numerical functions are Turing-computable:
$-\operatorname{succ}: \mathbb{N}_{0} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $\operatorname{succ}(n):=n+1$
$-\operatorname{pred}_{1}: \mathbb{N}_{0} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $\operatorname{pred}_{1}(n):= \begin{cases}n-1 & \text { if } n \geq 1 \\ 0 & \text { if } n=0\end{cases}$
$-\operatorname{pred}_{2}: \mathbb{N}_{0} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $\operatorname{pred}_{2}(n):= \begin{cases}n-1 & \text { if } n \geq 1 \\ \text { undefined } & \text { if } n=0\end{cases}$
How does incrementing and decrementing binary numbers work?

Predecessor Function

The Turing machine for pred $_{1}$ works as follows:
(Details of marking the first tape position ommitted)
(1) Check that the input is a valid binary number (as for succ).
(2) If the (entire) input is 0 or 1 , write a 0 and accept.
(3) Move the head onto the last symbol of the input.
(9) While you read symbol 0 replace it with 1 and move left.
(6) Replace the 1 with a 0 .
(0) If you are on the first tape cell, eliminate the trailing 0 (moving all other non-blank symbols one position to the left).
(0) Move the head to the first position and accept.

What do you have to change to get a TM for pred ${ }_{2}$?

Turing-Computable Functions

C3.2 Decidability vs. Computability

Example

The following numerical functions are Turing-computable:

- add $: \mathbb{N}_{0}^{2} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $\operatorname{add}\left(n_{1}, n_{2}\right):=n_{1}+n_{2}$
- sub: $\mathbb{N}_{0}^{2} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $\operatorname{sub}\left(n_{1}, n_{2}\right):=\max \left\{n_{1}-n_{2}, 0\right\}$
- mul: $\mathbb{N}_{0}^{2} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $m u l\left(n_{1}, n_{2}\right):=n_{1} \cdot n_{2}$
$-\operatorname{div}: \mathbb{N}_{0}^{2} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with $\operatorname{div}\left(n_{1}, n_{2}\right):= \begin{cases}\left\lceil\frac{n_{1}}{n_{2}}\right\rceil & \text { if } n_{2} \neq 0 \\ \text { undefined } & \text { if } n_{2}=0\end{cases}$
\rightsquigarrow sketch?

[^0]
Turing-recognizable Languages and Computability

Theorem

A language $L \subseteq \Sigma^{*}$ is Turing-recognizable
iff the following function $\chi_{L}^{\prime}: \Sigma^{*} \rightarrow_{p}\{0,1\}$ is computable.
Here, for all $w \in \Sigma^{*}$:

$$
\chi_{L}^{\prime}(w)= \begin{cases}1 & \text { if } w \in L \\ \text { undefined } & \text { if } w \notin L\end{cases}
$$

Proof sketch.
" \Rightarrow " Let M be a DTM for L. Construct a DTM M^{\prime} that simulates M on the input. If M accepts, M^{\prime} writes a 1 on the tape and accepts. Otherwise it enters an infinite loop.
$" \Leftarrow "$ Let C be a DTM that computes χ_{L}^{\prime}. Construct a DTM C^{\prime} that simulates C on the input. If C accepts with output 1 then C^{\prime} accepts, otherwise it enters an infinite loop.

[^0]: Decidability as Computability
 Theorem
 A language $L \subseteq \Sigma^{*}$ is decidable iff $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$,
 Decidability vs. Computability
 the characteristic function of L, is computable.
 Here, for all $w \in \Sigma^{*}$:

 $$
 \chi_{L}(w):= \begin{cases}1 & \text { if } w \in L \\ 0 & \text { if } w \notin L\end{cases}
 $$

 ## Proof sketch

 " \Rightarrow " Let M be a DTM for L. Construct a DTM M^{\prime} that simulates
 M on the input. If M accepts, M^{\prime} writes a 1 on the tape. If M rejects, M^{\prime} writes a 0 on the tape. Afterwards M^{\prime} accepts. $" \Leftarrow "$ Let C be a DTM that computes χ_{L}. Construct a DTM C^{\prime} that simulates C on the input. If the output of C is 1 then C^{\prime} accepts, otherwise it rejects.

