
Theory of Computer Science
C1. Turing Machines as Formal Model of Computation

Gabriele Röger

University of Basel

April 10, 2024

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 1 / 31

Theory of Computer Science
April 10, 2024 — C1. Turing Machines as Formal Model of Computation

C1.1 Hilbert’s 10th Problem

C1.2 Church-Turing Thesis

C1.3 Encoding

C1.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 2 / 31

Overview: Course

contents of this course:

A. background ✓
▷ mathematical foundations and proof techniques

B. automata theory and formal languages ✓
▷ What is a computation?

C. Turing computability
▷ What can be computed at all?

D. complexity theory
▷ What can be computed efficiently?

E. more computability theory
▷ Other models of computability

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 3 / 31

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

complexity
theory

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 4 / 31

Main Question

Main question in this part of the course:

What can be computed
by a computer?

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 5 / 31

C1. Turing Machines as Formal Model of Computation Hilbert’s 10th Problem

C1.1 Hilbert’s 10th Problem

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 6 / 31

C1. Turing Machines as Formal Model of Computation Hilbert’s 10th Problem

Algorithms

▶ Informally, an algorithm is a collection of simple instructions
for carrying out some task.

▶ Long history in mathematics since ancient times: descriptions
of algorithms e. g. for finding prime numbers or the greatest
common divisor.

▶ A formal notion of an algorithm itself was not defined until
the 20th century.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 7 / 31

C1. Turing Machines as Formal Model of Computation Hilbert’s 10th Problem

Hilbert’s 10th Problem

Around 1900 David Hilbert (German mathematician) formulated
23 mathematical problems as challenge for the 20th century.

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

What does this mean?

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 8 / 31

C1. Turing Machines as Formal Model of Computation Hilbert’s 10th Problem

Diophantine Equations

▶ A polynomial is a sum of terms where each term is a product
of a constant (the coefficient) and certain variables.
e. g. 6x3yz2 + 3xy2 − x3 − 10

▶ A polynomial equation is an equation p = 0, where p is a
polynmial. A solutions of the equation is called a root of p.
e. g. 6x3yz2 + 3xy2 − x3 − 10 has a root x = 5, y = 3, z = 0.

▶ Diophantine equations are polynomial equations, where only
integral roots (assigning only integer values to the variables)
count as solutions.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 9 / 31

C1. Turing Machines as Formal Model of Computation Hilbert’s 10th Problem

Hilbert’s 10th Problem

Hilbert’s 10th problem

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in
rational integers.

� Specify an algorithm that takes a polynomial
with integer coefficients as input and
outputs whether it has an integral root.

There is no such algorithm!
(implication of Matiyasevich’s theorem from 1970)

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 10 / 31

C1. Turing Machines as Formal Model of Computation Church-Turing Thesis

C1.2 Church-Turing Thesis

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 11 / 31

C1. Turing Machines as Formal Model of Computation Church-Turing Thesis

Formal Notion of Algorithm?

▶ What is an algorithm?
▶ intuitive model of algorithm (cookbook recipe)
▶ vs. algorithm in modern programming language
▶ vs. formal mathematical models

▶ Proving that no algorithm exists requires
a clear notion of algorithm.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 12 / 31

C1. Turing Machines as Formal Model of Computation Church-Turing Thesis

Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

▶ cannot be proven (why not?)
▶ but there is significant evidence such as equivalence of TMs

and different register machines:
▶ Counter machine: concept of registers
▶ Random-access machine (RAM): adds indirect addressing
▶ Random-access stored-program machines: related to the von

Neumann architecture (very close to modern computer
systems)

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 13 / 31

C1. Turing Machines as Formal Model of Computation Church-Turing Thesis

What about the Infinite Tape?

▶ Turing Machines have access to infinite storage.

▶ Computer systems do not.

▶ However: A halting (in particular: accepting) computation of
a TM can only use a finite part of the tape.

▶ If a problem is undecidable, we cannot solve it with a
computer, no matter how much memory we provide.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 14 / 31

C1. Turing Machines as Formal Model of Computation Church-Turing Thesis

Turing Completeness

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

Vice versa:

We say that a programming language is Turing-complete to
express that it can compute everything a Turing machine can.

▶ We can show Turing completeness by showing that with the
programming language we can simulate any Turing machine.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 15 / 31

C1. Turing Machines as Formal Model of Computation Church-Turing Thesis

Back to Hilbert’s Problem

The corresponding formal problem (= language) is

D = {p | p is a polynomial with an integral root}

Formal way to say that “there is no algorithm for this problem”:

D is not Turing-decidable.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 16 / 31

C1. Turing Machines as Formal Model of Computation Encoding

C1.3 Encoding

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 17 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Finite Structures as Strings

▶ Turing machines take words (= strings) as input and can only
represent strings on their tape.

▶ Is this a limitation?
▶ Not really!
▶ Computers also internally operate on binary numbers

(words over {0, 1}).
▶ We just need to define how a string encodes a certain

structure e. g. how does a file of 0s and 1s specify an image?
▶ We will have a look at two examples:

▶ Example 1: Encoding of pairs of numbers
▶ Example 2: Encoding of Turing machines

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 18 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Encoding and Decoding: Binary Encode

Consider the function encode : N2
0 → N0 with:

encode(x , y) :=

(
x + y + 1

2

)
+ x

▶ encode is known as the Cantor pairing function

▶ encode is computable

▶ encode is bijective

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 2 5 9 14
y = 1 1 4 8 13 19
y = 2 3 7 12 18 25
y = 3 6 11 17 24 32
y = 4 10 16 23 31 40

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 19 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode1 : N0 → N0 and decode2 : N0 → N0 of encode:

decode1(encode(x , y)) = x

decode2(encode(x , y)) = y

▶ decode1 and decode2 are computable

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 20 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Turing Machines as Inputs

▶ We will at some point consider problems that have Turing
machines as their input.

⇝ “programs that have programs as input”:
cf. compilers, interpreters, virtual machines, etc.

▶ We have to think about how we can encode
arbitrary Turing machines as words over a fixed alphabet.

▶ We use the binary alphabet Σ = {0, 1}.
▶ As an intermediate step we first encode over the alphabet

Σ′ = {0, 1, #}.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 21 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}
Reminder: Turing machine M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩
Idea:

▶ input alphabet Σ should always be {0, 1}
▶ enumerate states in Q and symbols in Γ

and consider them as numbers 0, 1, 2, . . .

▶ blank symbol always receives number 2

▶ start state always receives number 0, accept state number 1
and reject state number 2
(we can special-case machines where the start state is the accept or reject state)

Then it is sufficient to only encode δ explicitly:

▶ Q: all states mentioned in the encoding of δ

▶ Γ = {0, 1,□, a3, a4, . . . , ak}, where k is the largest symbol
number mentioned in the δ-rules

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 22 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Encoding a Turing Machine as a Word (2)

encode the rules:

▶ Let δ(qi , aj) = ⟨qi ′ , aj ′ ,D⟩ be a rule in δ,
where the indices i , i ′, j , j ′ correspond to the enumeration of
states/symbols and D ∈ {L,R}.

▶ encode this rule as
wi ,j ,i ′,j ′,D = ##bin(i)#bin(j)#bin(i ′)#bin(j ′)#bin(m),

where m =

{
0 if D = L

1 if D = R

▶ For every rule in δ, we obtain one such word.

▶ All of these words in sequence (in arbitrary order)
encode the Turing machine.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 23 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Encoding a Turing Machine as a Word (3)

Step 2: transform into word over {0, 1} with mapping

0 7→ 00

1 7→ 01

7→ 11

Turing machine can be reconstructed from its encoding.
How?

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 24 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Encoding a Turing Machine as a Word (4)

Example (step 1)

δ(q0, a3) = ⟨q3, a2,R⟩ becomes ##0#11#11#10#1
δ(q3, a1) = ⟨q1, a0, L⟩ becomes ##11#1#1#0#0

Example (step 2)

##0#11#11#10#1##11#1#1#0#0

1111001101011101011101001101111101011101110111001100

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 25 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Exercise: Encoding of TMs (slido)

What would be the encoding of a transition
δ(q0, a0) = (q1, a2, L) as word over {0, 1}?

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 26 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Turing Machine Encoded by a Word

goal: function that maps any word in {0, 1}∗ to a Turing machine

problem: not all words in {0, 1}∗ are encodings of a Turing machine

solution: Let M̂ be an arbitrary fixed deterministic Turing machine
(for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all w ∈ {0, 1}∗:

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 27 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Notation for Encoding

▶ Most of the time, we will not consider a particular encoding of
non-string objects.

▶ For a single object O, we will just write ⟨⟨O⟩⟩ to denote some
suitable encoding of O as a string.

▶ For several objects O1, . . . ,On, we write ⟨⟨O1, . . . ,On⟩⟩ for
their encoding into a single string.

▶ In the high-level description of a TM we can refer to them as
the objects they are because on the lower level the TM can be
programmed to handle the encoded representation accordingly.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 28 / 31

C1. Turing Machines as Formal Model of Computation Encoding

Example

L = {⟨⟨G ⟩⟩ | G is a connected undirected graph}

We describe a TM that recognizes L:

On input ⟨⟨G ⟩⟩, the encoding of a undirected graph G :

1 Select the first node of G and mark it.

2 Repeat until no more nodes are marked:
For each node in G , mark it if it is adjacent to a node that is
already marked.

3 Scan all the nodes of G to determine whether they are all
marked. If yes, accept, otherwise reject.

Implicit (lower-level detail): If the input does not encode an
undirected graph, directly reject.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 29 / 31

C1. Turing Machines as Formal Model of Computation Summary

C1.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 30 / 31

C1. Turing Machines as Formal Model of Computation Summary

Summary

▶ main question: what can a computer compute?

▶ approach: investigate formal models of computation
→ deterministic Turing machines

▶ Based on the (existing evidence for the) Church-Turing thesis,
we will describe the behaviour of Turing machines on a higher
abstraction level (such as pseudo-code).

▶ The formal restriction of TMs to strings is not a practical
limitation but can be handled with suitable encodings.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2024 31 / 31

	Hilbert's 10th Problem
	

	Church-Turing Thesis
	

	Encoding
	

	Summary
	

