Theory of Computer Science B10. Context-free Languages: Closure & Decidability

Gabriele Röger

University of Basel

April 3, 2024

Decidability 0000000000 Summary 000

Pumping Lemma

Decidability 0000000000 Summary 000

Pumping Lemma for Context-free Languages

We used the pumping lemma from chapter B7 to show that a language is not regular. Is there a similar lemma for context-free languages?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Decidability 0000000000 Summary 000

Pumping Lemma for Context-free Languages

We used the pumping lemma from chapter B7 to show that a language is not regular. Is there a similar lemma for context-free languages?

Yes!

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Pumping Lemma for Context-free Languages

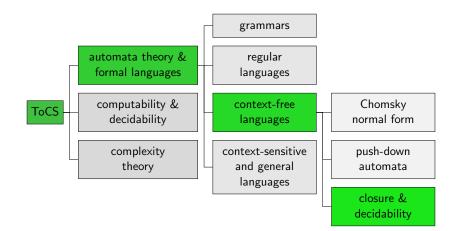
Pumping lemma for context-free languages:

- It is possible to prove a variant of the pumping lemma for context-free languages.
- Pumping is more complex than for regular languages:
 - word is decomposed into the form uvwxywith $|vx| \ge 1$, $|vwx| \le p$
 - pumped words have the form uvⁱwxⁱy
- This allows us to prove that certain languages are not context-free.
- example: {aⁿbⁿcⁿ | n ≥ 1} is not context-free (we will later use this without proof)

Decidability 0000000000 Summary 000

Closure Properties

Content of the Course



Summary 000

Closure under Union, Concatenation, Star

Theorem

The context-free languages are closed under:

- union
- concatenation
- star

. . .

Closure under Union, Concatenation, Star: Proof

Proof.

Closed under union:

Let $G_1 = \langle V_1, \Sigma_1, R_1, S_1 \rangle$ and $G_2 = \langle V_2, \Sigma_2, R_2, S_2 \rangle$ be context-free grammars. W.I.o.g., $V_1 \cap V_2 = \emptyset$. Then $\langle V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}, S \rangle$ (where $S \notin V_1 \cup V_2$) is a context-free grammar for $\mathcal{L}(G_1) \cup \mathcal{L}(G_2)$.

. . .

Closure under Union, Concatenation, Star: Proof

Proof (continued).

Closed under concatenation:

Let $G_1 = \langle V_1, \Sigma_1, R_1, S_1 \rangle$ and $G_2 = \langle V_2, \Sigma_2, R_2, S_2 \rangle$ be context-free grammars. W.I.o.g., $V_1 \cap V_2 = \emptyset$. Then $\langle V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \to S_1S_2\}, S \rangle$ (where $S \notin V_1 \cup V_2$) is a context-free grammar for $\mathcal{L}(G_1)\mathcal{L}(G_2)$.

Closure under Union, Concatenation, Star: Proof

Proof (continued).

Closed under star:

Let $G = \langle V, \Sigma, R, S \rangle$ be a context-free grammar where w.l.o.g. S never occurs on the right-hand side of a rule. Then $G' = \langle V \cup \{S'\}, \Sigma, R', S' \rangle$ with $S' \notin V$ and $R' = R \cup \{S' \rightarrow \varepsilon, S' \rightarrow S, S' \rightarrow SS'\}$ is a context-free grammar for $\mathcal{L}(G)^*$.

Decidability 0000000000 Summary 000

No Closure under Intersection or Complement

Theorem

The context-free languages are not closed under:

- intersection
- complement

No Closure under Intersection or Complement: Proof

Proof.

Not closed under intersection:

The languages
$$L_1 = \{a^i b^j c^j \mid i, j \ge 1\}$$

and $L_2 = \{a^i b^j c^i \mid i, j \ge 1\}$ are context-free.

• For example,
$$G_1 = \langle \{S, A, X\}, \{a, b, c\}, R, S \rangle$$
 with $R = \{S \rightarrow AX, A \rightarrow a, A \rightarrow aA, X \rightarrow bc, X \rightarrow bXc\}$ is a context-free grammar for L_1 .

• For example,
$$G_2 = \langle \{S, B\}, \{a, b, c\}, R, S \rangle$$
 with $R = \{S \rightarrow aSc, S \rightarrow B, B \rightarrow b, B \rightarrow bB\}$ is a context-free grammar for L_2 .

Their intersection is $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 1\}$. We have remarked before that this language is not context-free.

. . .

No Closure under Intersection or Complement: Proof

Proof (continued).

Not closed under complement:

By contradiction: assume they were closed under complement.

Then they would also be closed under intersection because they are closed under union and

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}.$$

This is a contradiction because we showed that they are not closed under intersection.

Decidability 0000000000 Summary 000

Questions

Questions?

Decidability •0000000000

Summary 000

Decidability

Decidability 0000000000

Word Problem

Definition (Word Problem for Context-free Languages)

The word problem P_{\in} for context-free languages is:

Given: context-free grammar G with alphabet Σ and word $w \in \Sigma^*$ Question: Is $w \in \mathcal{L}(G)$?

Decidability: Word Problem

Theorem

The word problem P_{\in} for context-free languages is decidable.

Proof.

If $w = \varepsilon$, then $w \in \mathcal{L}(G)$ iff $S \to \varepsilon$ with start variable S is a rule of G.

Since for all other rules $w_{l} \rightarrow w_{r}$ of *G* we have $|w_{l}| \leq |w_{r}|$, the intermediate results when deriving a non-empty word never get shorter.

So it is possible to systematically consider all (finitely many) derivations of words up to length |w| and test whether they derive the word w.

Note: This is a terribly inefficient algorithm.

Emptiness Problem

Definition (Emptiness Problem for Context-free Languages)

The emptiness problem P_{\emptyset} for context-free languages is:

Given: context-free grammar G Question: Is $\mathcal{L}(G) = \emptyset$?

Decidability: Emptiness Problem

Theorem

The emptiness problem for context-free languages is decidable.

Proof.

Given a grammar G, determine all variables in G that allow deriving words that only consist of terminal symbols:

- First mark all variables A for which a rule A → w exists such that w only consists of terminal symbols or w = ε.
- Then mark all variables A for which a rule A → w exists such that all nonterminal systems in w are already marked.
- Repeat this process until no further markings are possible. $\mathcal{L}(G)$ is empty iff the start variable is unmarked at the end of this process.

Finiteness Problem

Definition (Finiteness Problem for Context-free Languages)

The finiteness problem P_{∞} for context-free languages is:

Given: context-free grammar G Question: Is $|\mathcal{L}(G)| < \infty$?

Decidability: Finiteness Problem

Theorem

The finiteness problem for context-free languages is decidable.

We omit the proof. A possible proof uses the pumping lemma for context-free languages.

Proof sketch:

- We can compute certain bounds *I*, *u* ∈ N₀ for a given context-free grammar *G* such that *L*(*G*) is infinite iff there exists *w* ∈ *L*(*G*) with *I* ≤ |*w*| ≤ *u*.
- Hence we can decide finiteness by testing all (finitely many) such words by using an algorithm for the word problem.

Intersection Problem

Definition (Intersection Problem for Context-free Languages)

The intersection problem $P_{\ensuremath{\cap}}$ for context-free languages is:

Given:	context-free grammars G and G'
Question:	Is $\mathcal{L}(G)\cap\mathcal{L}(G')=\emptyset$?

Decidability 000000000000

Equivalence Problem

Definition (Equivalence Problem for Context-free Languages)

The equivalence problem $P_{=}$ for context-free languages is:

Given: context-free grammars G and G' Question: Is $\mathcal{L}(G) = \mathcal{L}(G')$?

Undecidability: Equivalence and Intersection Problem

Theorem

The equivalence problem for context-free languages and the intersection problem for context-free languages are not decidable.

We cannot show this with the means currently available, but we will get back to this in Part C (computability theory).

Decidability 0000000000

Summary 000

Questions

Questions?

Decidability 0000000000 Summary •00

Summary

Summary

- The context-free languages are closed under union, concatenation and star.
- The context-free languages are not closed under intersection or complement.
- The word problem, emptiness problem and finiteness problem for the class of context-free languages are decidable.
- The equivalence problem and intersection problem for the class of context-free languages are not decidable.

Further Topics on Context-free Languages and PDAs

- With the CYK-algorithm (Cocke, Younger and Kasami) it is possible to decide w ∈ L(G) in time O(|w|³) for a grammar in Chomsky normal form and a word w.
- Deterministic push-down automata have the restriction $|\delta(q, a, A)| + |\delta(q, \varepsilon, A)| \le 1$ for all $q \in Q, a \in \Sigma, A \in \Gamma$.
- The languages recognized by deterministic PDAs are called deterministic context-free languages. They form a strict superset of the regular languages and a strict subset of the context-free languages.