

Theory of Computer Science March 25/27, 2024 — B8. Context-free Languages: ε -Rules & Chomsky Normal Form						
B8.1 Context-free Grammars and ε -Rules						
R8.2 Chamely, Normal Form						
B8.2 Chomsky Normal Form						
B8.3 Summary						
Gabriele Röger (University of Basel) Theory of Computer Science March 25/27, 2024 2 / 23						

Do 1 Contout free Customers on

B8. Context-free Languages: ε -Rules & Chomsky Normal Form

B8.1 Context-free Grammars and $\varepsilon\text{-Rules}$

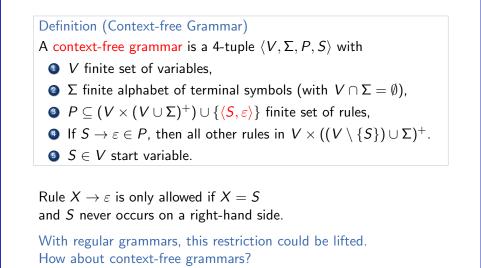
Gabriele Röger (University of Basel)

Theory of Computer Science

Context-free Grammars and ε -Rules

Context-free Grammars and ε -Rules

Repetition: Context-free Grammars



Theory of Computer Science

Gabriele Röger (University of Basel)

March 25/27, 2024 5 / 23

B8. Context-free Languages: ε-Rules & Chomsky Normal Form

Context-free Grammars and ε -Rules

Repetition: Context-free Grammars

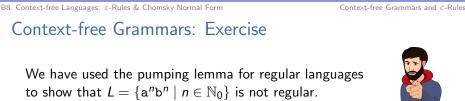
Definition (Context-free Grammar)

A context-free grammar is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- V finite set of variables.
- **2** Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- **3** $P \subseteq (V \times (V \cup \Sigma)^+) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules,
- If $S \to \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.
- **5** $S \in V$ start variable.

Rule $X \to \varepsilon$ is only allowed if X = Sand S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars?



Show that it is context-free by specifying a suitable grammar G with $\mathcal{L}(G) = L$.

Gabriele	Röger	(University	of	Base

March 25/27, 2024

B8. Context-free Languages: ε-Rules & Chomsky Normal Form Context-free Grammars and ε -Rules Repetition: Context-free Grammars Definition (Context-free Grammar) A context-free grammar is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with • V finite set of variables. **2** Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$), • $P \subseteq (V \times (V \cup \Sigma)^+) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules, • If $S \to \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$. **5** $S \in V$ start variable. Rule $X \to \varepsilon$ is only allowed if X = Sand S never occurs on a right-hand side.

Theory of Computer Science

With regular grammars, this restriction could be lifted. How about context-free grammars?

6 / 23

B8. Context-free Languages: $\varepsilon\text{-Rules}$ & Chomsky Normal Form

Context-free Grammars and $\varepsilon\text{-Rules}$

Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

Theorem

For every grammar $G = \langle V, \Sigma, P, S \rangle$ there is a grammar $G' = \langle V', \Sigma, P', S \rangle$ with rules $P' \subseteq (V' \cup \Sigma)^+ \times (V' \setminus \{S\} \cup \Sigma)^*$ such that $\mathcal{L}(G) = \mathcal{L}(G')$.

In the proof we constructed a suitable grammar, where the rules in P' were not fundamentally different from the rules in P:

- ► for rules from $V \times (V \cup \Sigma)^+$, we only introduced additional rules from $V' \times (V' \cup \Sigma)^+$, and
- ▶ for rules from $V \times \varepsilon$, we only introduced rules from $V' \times \varepsilon$, where $V' = V \cup \{S'\}$ for some new variable $S' \notin V$.

```
Gabriele Röger (University of Basel)
```

Theory of Computer Science March 25/27, 2024

B8. Context-free Languages: ε -Rules & Chomsky Normal Form

Context-free Grammars and ε -Rules

9 / 23

March 25/27, 2024 11 / 23

$\varepsilon\text{-Rules}$

Theorem For every grammar G with rules $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

- Let P'' be the rule set that is constructed from P' by
- adding rules that obviate the need for A → ε rules: for every existing rule B → w with B ∈ V', w ∈ (V' ∪ Σ)⁺, let I_ε be the set of positions where w contains a variable A ∈ V_ε. For every non-empty set I' ⊆ I_ε, add a new rule B → w', where w' is constructed from w by removing the variables at all positions in I'.

► removing all rules of the form
$$A \to \varepsilon$$
 $(A \neq S)$.
Then $G'' = \langle V', \Sigma, P'', S \rangle$ is context-free and $\mathcal{L}(G) = \mathcal{L}(G'')$.

B8. Context-free Languages: ε -Rules & Chomsky Normal Form

Context-free Grammars and ε -Rules

ε -Rules

Theorem

For every grammar G with rules $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle V, \Sigma, P, S \rangle$ be a grammar with $P \subseteq V \times (V \cup \Sigma)^*$.

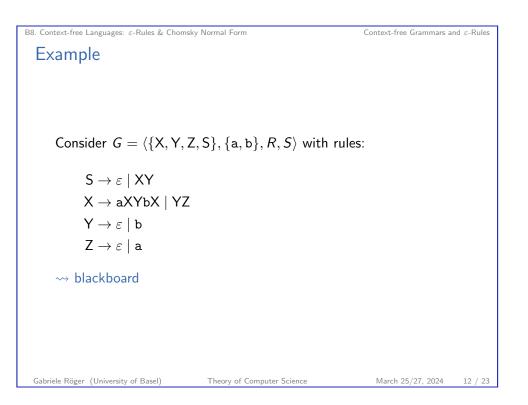
Let $G' = \langle V', \Sigma, P', S \rangle$ be a grammar with $\mathcal{L}(G) = \mathcal{L}(G')$ with $P' \subseteq V' \times ((V' \setminus S) \cup \Sigma)^*$.

Let $V_{\varepsilon} = \{A \in V' \mid A \Rightarrow_{G'}^* \varepsilon\}$. We can find this set V_{ε} by first collecting all variables A with rule $A \to \varepsilon \in P'$ and then successively adding additional variables B if there is a rule $B \to A_1A_2 \dots A_k \in P'$ and the variables A_i are already in the set for all $1 \leq i \leq k$.

Theory of Computer Science

Gabriele Röger (University of Basel)

March 25/27, 2024 10 / 23



March 25/27, 2024

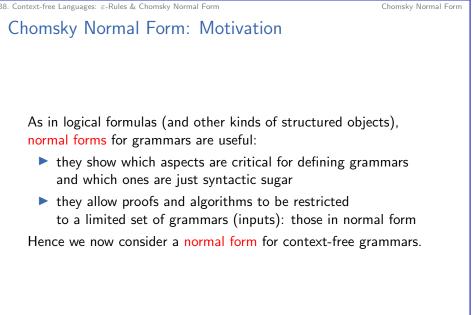
13 / 23

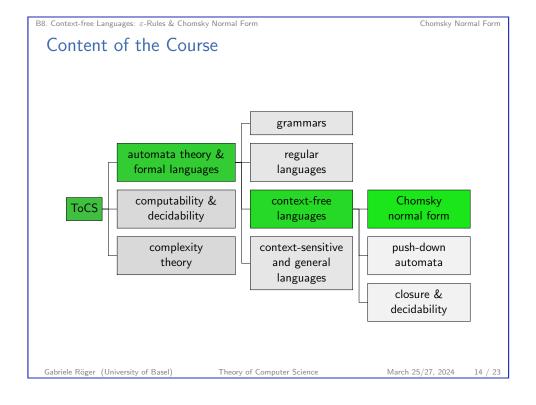
B8.2 Chomsky Normal Form

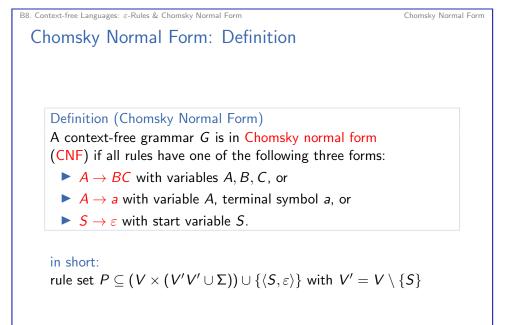
Gabriele Röger (University of Basel)

Theory of Computer Science

B8. Context-free Languages: ε -Rules & Chomsky Normal Form







Theory of Computer Science

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

The following algorithm converts the rule set of *G* into CNF:

Step 1: Eliminate rules of the form $A \rightarrow B$ with variables A, B.

If there are sets of variables $\{B_1, \ldots, B_k\}$ with rules $B_1 \rightarrow B_2, B_2 \rightarrow B_3, \ldots, B_{k-1} \rightarrow B_k, B_k \rightarrow B_1,$

then replace these variables by a new variable B.

Define a strict total order < on the variables such that $A \rightarrow B \in P$ implies that A < B. Iterate from the largest to the smallest variable A and eliminate all rules of the form $A \rightarrow B$ while adding rules $A \to w$ for every rule $B \to w$ with $w \in (V \cup \Sigma)^+$

Gabriele Röger (University of Basel)

Theory of Computer Science March 25/27, 2024

B8. Context-free Languages: ε-Rules & Chomsky Normal Form

Chomsky Normal Form

17 / 23

19 / 23

Chomsky Normal Form

Chomsky Normal Form: Theorem

Theorem For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$. Proof (continued). Step 3: Eliminate rules of the form $A \rightarrow B_1 B_2 \dots B_k$ with k > 2For every rule of the form $A \rightarrow B_1 B_2 \dots B_k$ with k > 2, add new variables C_2, \ldots, C_{k-1} and replace the rule with $A \rightarrow B_1 C_2$ $C_2 \rightarrow B_2 C_3$ $C_{k-1} \rightarrow B_{k-1}B_k$

Theory of Computer Science

B8. Context-free Languages: ε-Rules & Chomsky Normal Form

Chomsky Normal Form

20 / 23

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

	1	es with terminal symbols of de that do not have the for						
	For every terminal symbol $a \in \Sigma$ add a new variable A_a and the rule $A_a \rightarrow a$.							
	Replace all terminal symbols in all rules that do not have the form $A \rightarrow a$ with the corresponding newly added variables							
Gabriel	e Röger (University of Basel)	Theory of Computer Science	March 25/27, 2024	18 / 23				

B8. Context-free Languages: ε -Rules & Chomsky Normal Form Chomsky Normal Form Example Consider $G = \langle \{Y, Z, S\}, \{a, b\}, R, S \rangle$ with rules: $S \rightarrow aZbY \mid Y \mid ab$ $\mathsf{Y} \to \mathsf{Z} \mid \mathsf{b}$ $\mathsf{Z} \to \mathsf{Y} \mid \mathtt{bSa}$ \rightarrow blackboard Gabriele Röger (University of Basel) Theory of Computer Science March 25/27, 2024

Chomsky Normal Form: Length of Derivations

Observation

Let G be a grammar in Chomsky normal form, and let $w \in \mathcal{L}(G)$ be a non-empty word generated by G. Then all derivations of w have exactly 2|w| - 1 derivation steps.

Why?

Gabriele Röger (University of Basel)

Theory of Computer Science

B8. Context-free Languages: $\varepsilon\text{-Rules}$ & Chomsky Normal Form

Summary

- The restriction of ε-occurrences in rules is not necessary to characterize the set of context-free languages.
- Every context-free language has a grammar in Chomsky normal form. All rules have form
 - $A \rightarrow BC$ with variables A, B, C, or
 - $A \rightarrow a$ with variable A, terminal symbol a, or
 - $S \rightarrow \varepsilon$ with start variable S.

B8.3 Summary

Gabriele Röger (University of Basel)

Theory of Computer Science

March 25/27, 2024 22 / 23

Chomsky Normal Form

March 25/27, 2024 21 / 23

Summarv