Theory of Computer Science B7. Regular Languages: Pumping Lemma

Gabriele Röger

University of Basel

March 25, 2024

Pumping Lemma

Content of the Course

Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you you show that a language is not regular?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you you show that a language is not regular?

 Direct proof that no regular grammar exists that generates the language
 ~> difficult in general

Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you you show that a language is not regular?

- Direct proof that no regular grammar exists that generates the language

 difficult in general
- Pumping lemma: use a necessary property that holds for all regular languages.

Pumping Lemma

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

$$|v| \ge 1$$
,
 $|uv| \le p$, and
 $uv^{i}w \in L$ for all $i = 0, 1, 2,$

Question: what if L is finite?

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

●
$$|v| \ge 1$$
,

2
$$|uv| \leq p$$
, and

3
$$uv^iw \in L$$
 for all $i = 0, 1, 2, \dots$

. . .

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

$$|v| \ge 1,$$

2
$$|uv| \leq p$$
, and

3
$$uv^iw \in L$$
 for all $i = 0, 1, 2, \ldots$

Proof.

For regular *L* there exists a DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ with $\mathcal{L}(M) = L$. We show that p = |Q| has the desired properties.

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

•
$$|v| \ge 1$$
,
• $|uv| \le p$, and
• $|uv| \le p$, for all $i = 0, 1$

3
$$uv^i w \in L$$
 for all $i = 0, 1, 2, \ldots$

Proof.

For regular *L* there exists a DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ with $\mathcal{L}(M) = L$. We show that p = |Q| has the desired properties. Consider an arbitrary $x \in \mathcal{L}(M)$ with length $|x| \ge |Q|$. Including the start state, *M* visits |x| + 1 states while reading *x*. Because of $|x| \ge |Q|$ at least one state has to be visited twice. ...

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

●
$$|v| \ge 1$$
,
● $|uv| \le p$, and
● $uv^{i}w \in L$ for all $i = 0, 1, 2,$

Proof (continued).

Choose a split x = uvw so M is in the same state after reading u and after reading uv. Obviously, we can choose the split in a way that $|v| \ge 1$ and $|uv| \le |Q|$ are satisfied. ...

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

●
$$|v| \ge 1$$
,
● $|uv| \le p$, and
● $uv^{i}w \in L$ for all $i = 0, 1, 2, ..., i$

Proof (continued).

The word v corresponds to a loop in the DFA after reading u and can thus be repeated arbitrarily often. Every subsequent continuation with w ends in the same end state as reading x. Therefore $uv^i w \in \mathcal{L}(M) = L$ is satisfied for all i = 0, 1, 2, ...

Pumping Lemma: Application

Using the pumping lemma (PL):

Proof of Nonregularity

- If *L* is regular, then the pumping lemma holds for *L*.
- By contraposition: if the PL does not hold for L, then L cannot be regular.
- That is: if there is no $p \in \mathbb{N}$ with the properties of the PL, then L cannot be regular.

Pumping Lemma: Caveat

Caveat:

The pumping lemma is a necessary condition for a language to be regular, but not a sufficient one.

- where are languages that satisfy the pumping lemma conditions but are not regular
- ✓→ for such languages, other methods are needed to show that they are not regular (e.g., the Myhill-Nerode theorem)

Pumping Lemma: Example

Example

The language $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof.

Assume *L* is regular. Then let *p* be a pumping number for *L*. The word $x = a^{p}b^{p}$ is in *L* and has length $\geq p$. Let x = uvw be a split with the properties of the PL. Then the word $x' = uv^{2}w$ is also in *L*. Since $|uv| \leq p$, uv consists only of symbols a and $x' = a^{|u|}a^{2|v|}a^{p-|uv|}b^{p} = a^{p+|v|}b^{p}$. Since $|v| \geq 1$ it follows that $p + |v| \neq p$ and thus $x' \notin L$. This is a contradiction to the PL. $\rightsquigarrow L$ is not regular.

. . .

Pumping Lemma: Another Example I

Example

The language $L = \{ab^n ac^{n+2} \mid n \in \mathbb{N}\}$ is not regular.

Proof.

Assume *L* is regular. Then let *p* be a pumping number for *L*. The word $x = ab^{p}ac^{p+2}$ is in *L* and has length $\ge p$. Let x = uvw be a split with the properties of the PL. From $|uv| \le p$ and $|v| \ge 1$ we know that uv consists of one a followed by at most p - 1 bs. We distinguish two cases, |u| = 0 and |u| > 0.

Pumping Lemma: Another Example II

Example

The language $L = \{ab^n ac^{n+2} \mid n \in \mathbb{N}\}$ is not regular.

Proof (continued).

If |u| = 0, then word v starts with an a. Hence, $uv^0w = b^{p-|v|+1}ac^{p+2}$ does not start with symbol a and is therefore not in L. This is a contradiction to the PL. If |u| > 0, then word v consists only of bs. Consider $uv^0w = ab^{p-|v|}ac^{p+2}$. As $|v| \ge 1$, this word does not contain two more cs than bs and is therefore not in language L. This is a contradiction to the PL. We have in all cases a contradiction to the PL.

 \rightsquigarrow *L* is not regular.

Pumping Lemma: Exercise

This was an exam question in 2020:

Use the pumping lemma to prove that $L = \{a^m b^n \mid m \ge 0, n < m\}$ is not regular.

Summa 00

Questions

Questions?

Summary

Summary

• The pumping lemma can be used to show that a language is not regular.