Theory of Computer Science
 B7. Regular Languages: Pumping Lemma

Gabriele Röger
University of Basel

March 25, 2024

Pumping Lemma

Content of the Course

Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you you show that a language is not regular?

Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you you show that a language is not regular?

- Direct proof that no regular grammar exists that generates the language
\rightsquigarrow difficult in general

Pumping Lemma: Motivation

You can show that a language is regular by specifying an appropriate grammar, finite automaton, or regular expression. How can you you show that a language is not regular?

■ Direct proof that no regular grammar exists that generates the language
\rightsquigarrow difficult in general
■ Pumping lemma: use a necessary property that holds for all regular languages.

Pumping Lemma

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \geq p$
can be split into $x=u v w$ with the following properties:
(1) $|v| \geq 1$,
(2) $|u v| \leq p$, and
(3) $u v^{i} w \in L$ for all $i=0,1,2, \ldots$.

Question: what if L is finite?

Pumping Lemma: Proof

Theorem (Pumping Lemma)
If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \geq p$
can be split into $x=u v w$ with the following properties:
(1) $|v| \geq 1$,
(2) $|u v| \leq p$, and
(3) $u v^{i} w \in L$ for all $i=0,1,2, \ldots$.

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \geq p$
can be split into $x=u v w$ with the following properties:
(1) $|v| \geq 1$,
(2) $|u v| \leq p$, and
(3) $u v^{i} w \in L$ for all $i=0,1,2, \ldots$.

Proof.

For regular L there exists a DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, E\right\rangle$ with $\mathcal{L}(M)=L$. We show that $p=|Q|$ has the desired properties.

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \geq p$ can be split into $x=u v w$ with the following properties:
(1) $|v| \geq 1$,
(2) $|u v| \leq p$, and
(3) $u v^{i} w \in L$ for all $i=0,1,2, \ldots$.

Proof.

For regular L there exists a DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, E\right\rangle$ with $\mathcal{L}(M)=L$. We show that $p=|Q|$ has the desired properties.
Consider an arbitrary $x \in \mathcal{L}(M)$ with length $|x| \geq|Q|$. Including the start state, M visits $|x|+1$ states while reading x. Because of $|x| \geq|Q|$ at least one state has to be visited twice.

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \geq p$ can be split into $x=u v w$ with the following properties:
(1) $|v| \geq 1$,
(2) $|u v| \leq p$, and
(3) $u v^{i} w \in L$ for all $i=0,1,2, \ldots$.

Proof (continued).

Choose a split $x=u v w$ so M is in the same state after reading u and after reading $u v$. Obviously, we can choose the split in a way that $|v| \geq 1$ and $|u v| \leq|Q|$ are satisfied.

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \geq p$ can be split into $x=u v w$ with the following properties:
(1) $|v| \geq 1$,
(2) $|u v| \leq p$, and
(3) $u v^{i} w \in L$ for all $i=0,1,2, \ldots$.

Proof (continued).

The word v corresponds to a loop in the DFA after reading u and can thus be repeated arbitrarily often. Every subsequent continuation with w ends in the same end state as reading x. Therefore $u v^{i} w \in \mathcal{L}(M)=L$ is satisfied for all $i=0,1,2, \ldots$

Pumping Lemma: Application

Using the pumping lemma (PL):

Proof of Nonregularity

■ If L is regular, then the pumping lemma holds for L.

- By contraposition: if the PL does not hold for L, then L cannot be regular.
- That is: if there is no $p \in \mathbb{N}$ with the properties of the PL , then L cannot be regular.

Pumping Lemma: Caveat

Caveat:

The pumping lemma is a necessary condition for a language to be regular, but not a sufficient one.
\rightsquigarrow there are languages that satisfy the pumping lemma conditions but are not regular
\rightsquigarrow for such languages, other methods are needed to show that they are not regular (e.g., the Myhill-Nerode theorem)

Pumping Lemma: Example

Example

The language $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not regular.

Proof.

Assume L is regular. Then let p be a pumping number for L.
The word $x=\mathrm{a}^{p} \mathrm{~b}^{p}$ is in L and has length $\geq p$.
Let $x=u v w$ be a split with the properties of the PL.
Then the word $x^{\prime}=u v^{2} w$ is also in L. Since $|u v| \leq p, u v$ consists only of symbols a and $x^{\prime}=\mathrm{a}^{|u|} \mathrm{a}^{2|v|} \mathrm{a}^{p-|u v|} \mathrm{b}^{p}=\mathrm{a}^{p+|v|} \mathrm{b}^{p}$.
Since $|v| \geq 1$ it follows that $p+|v| \neq p$ and thus $x^{\prime} \notin L$.
This is a contradiction to the PL. $\rightsquigarrow L$ is not regular.

Pumping Lemma: Another Example I

Example

The language $L=\left\{\mathrm{ab}^{n} \mathrm{ac}^{n+2} \mid n \in \mathbb{N}\right\}$ is not regular.

Proof.

Assume L is regular. Then let p be a pumping number for L.
The word $x=\mathrm{ab}^{p} \mathrm{ac}^{p+2}$ is in L and has length $\geq p$.
Let $x=u v w$ be a split with the properties of the PL.
From $|u v| \leq p$ and $|v| \geq 1$ we know that $u v$ consists of one a followed by at most $p-1$ bs.
We distinguish two cases, $|u|=0$ and $|u|>0$.

Pumping Lemma: Another Example II

Example

The language $L=\left\{\mathrm{ab}^{n} \mathrm{ac}^{n+2} \mid n \in \mathbb{N}\right\}$ is not regular.

Proof (continued).

If $|u|=0$, then word v starts with an a.
Hence, $u v^{0} w=\mathrm{b}^{p-|v|+1} \mathrm{ac}^{p+2}$ does not start with symbol a and is therefore not in L. This is a contradiction to the PL.
If $|u|>0$, then word v consists only of bs.
Consider $u v^{0} w=\mathrm{ab}^{p-|v|} \mathrm{ac}^{p+2}$. As $|v| \geq 1$, this word does not contain two more cs than bs and is therefore not in language L. This is a contradiction to the PL.

We have in all cases a contradiction to the PL.
$\rightsquigarrow L$ is not regular.

Pumping Lemma: Exercise

This was an exam question in 2020:
Use the pumping lemma to prove that
$L=\left\{a^{m} b^{n} \mid m \geq 0, n<m\right\}$ is not regular.

Questions

Questions?

Summary

Summary

- The pumping lemma can be used to show that a language is not regular.

