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Finite Automata

Last chapter:

Two kinds of finite automata: DFAs and NFAs.

DFAs can be seen as a special case of NFAs.

Questions for today:

Are there languages that can only be recognized by one kind
of finite automaton (but not the other)?

Can we characterize the languages that DFAs/NFAs can
recognize, e.g. within the Chomsky hierarchy?



Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Finite Automata

Last chapter:

Two kinds of finite automata: DFAs and NFAs.

DFAs can be seen as a special case of NFAs.

Questions for today:

Are there languages that can only be recognized by one kind
of finite automaton (but not the other)?

Can we characterize the languages that DFAs/NFAs can
recognize, e.g. within the Chomsky hierarchy?



Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

DFAs vs. NFAs



Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

DFAs are No More Powerful than NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
δ(q, a) = q′ with δ(q, a) = {q′}.
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Question

DFAs are
no more powerful than NFAs.

But are there languages
that can be recognized

by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).
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Conversion of an NFA to an Equivalent DFA: Example

q0 q1 q2 q3
ε

ε

0

0,1

0



Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA M = ⟨Q,Σ, δ, q0,F ⟩ we can construct
a DFA M ′ = ⟨Q ′,Σ, δ′, q′0,F

′⟩ with L(M) = L(M ′).
Here M ′ is defined as follows:

Q ′ := P(Q) (the power set of Q)

q′0 := E (q0)

F ′ := {Q ⊆ Q | Q ∩ F ̸= ∅}
For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

⋃
q′∈δ(q,a) E (q

′)

. . .
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states p0, p1, . . . , pn with
iff p0 ∈ E (q0), pn ∈ F and

pi ∈
⋃

q∈δ(pi−1,ai )
E (q) for all i ∈ {1, . . . , n}

iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ F ′ and δ′(Qi−1, ai ) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)
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NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be recognized by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that recognizes Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.
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Questions

Questions?
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Finite Automata vs. Regular
Languages
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Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).
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Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof.

Let M = ⟨Q,Σ, δ, q0,F ⟩ be a DFA.
We define a regular grammar G with L(G ) = L(M).

Define G = ⟨Q,Σ,R, q0⟩ where R contains

a rule q → aq′ for every δ(q, a) = q′, and

a rule q → ε for every q ∈ F .

(We can eliminate forbidden epsilon rules as described in Ch. B2.)
. . .
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Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q
′
n ∈ F and δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n}

iff there is a sequence of variables q′0, q
′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G )
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Exercise

q0q1 q2
0

1

0

1

0

1

Specify a regular grammar that generates the
language recognized by this DFA.
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Questions

Questions?
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Question

Is the inverse true as well:
for every regular language, is there a

DFA that recognizes it? That is, are the
languages recognized by DFAs exactly

the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof illustration:

Consider G = ⟨{S,A,B}, {a, b},R,S⟩ with the following rules in R:

S → ε S → aA A → aA A → aB

A → a B → bB B → b
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Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof.

Let G = ⟨V ,Σ,R,S⟩ be a regular grammar.
Define NFA M = ⟨Q,Σ, δ, q0,F ⟩ with

Q = V ∪ {X}, X ̸∈ V

q0 = S

F =

{
{S ,X} if S → ε ∈ R

{X} if S → ε ̸∈ R

B ∈ δ(A, a) if A → aB ∈ R

X ∈ δ(A, a) if A → a ∈ R

. . .
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Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G )

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ F iff S → ε ∈ R.
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Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is recognized by a DFA.
L regular ⇐⇒ L is recognized by an NFA.
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Questions

Questions?
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Summary
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Summary

DFAs and NFAs recognize the same languages.

These are exactly the regular languages.
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