
Theory of Computer Science
B4. Finite Automata: Characterization

Gabriele Röger

University of Basel

March 13, 2024

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Content of the Course

ToCS

automata theory &
formal languages

grammars

regular
languages

finite
automata

closure &
decidability

regular
expressions

pumping
lemma

context-free
languages

context-sensitive
and general
languages

computability &
decidability

complexity
theory

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Introduction

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Finite Automata

Last chapter:

Two kinds of finite automata: DFAs and NFAs.

DFAs can be seen as a special case of NFAs.

Questions for today:

Are there languages that can only be recognized by one kind
of finite automaton (but not the other)?

Can we characterize the languages that DFAs/NFAs can
recognize, e.g. within the Chomsky hierarchy?

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Finite Automata

Last chapter:

Two kinds of finite automata: DFAs and NFAs.

DFAs can be seen as a special case of NFAs.

Questions for today:

Are there languages that can only be recognized by one kind
of finite automaton (but not the other)?

Can we characterize the languages that DFAs/NFAs can
recognize, e.g. within the Chomsky hierarchy?

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

DFAs vs. NFAs

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

DFAs are No More Powerful than NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
δ(q, a) = q′ with δ(q, a) = {q′}.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Question

DFAs are
no more powerful than NFAs.

But are there languages
that can be recognized

by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Conversion of an NFA to an Equivalent DFA: Example

q0 q1 q2 q3
ε

ε

0

0,1

0

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA M = ⟨Q,Σ, δ, q0,F ⟩ we can construct
a DFA M ′ = ⟨Q ′,Σ, δ′, q′0,F

′⟩ with L(M) = L(M ′).
Here M ′ is defined as follows:

Q ′ := P(Q) (the power set of Q)

q′0 := E (q0)

F ′ := {Q ⊆ Q | Q ∩ F ̸= ∅}
For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

⋃
q′∈δ(q,a) E (q

′)

. . .

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states p0, p1, . . . , pn with
iff p0 ∈ E (q0), pn ∈ F and

pi ∈
⋃

q∈δ(pi−1,ai)
E (q) for all i ∈ {1, . . . , n}

iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ F ′ and δ′(Qi−1, ai) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be recognized by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that recognizes Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be recognized by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that recognizes Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be recognized by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that recognizes Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be recognized by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that recognizes Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Questions

Questions?

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Finite Automata vs. Regular
Languages

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof.

Let M = ⟨Q,Σ, δ, q0,F ⟩ be a DFA.
We define a regular grammar G with L(G) = L(M).

Define G = ⟨Q,Σ,R, q0⟩ where R contains

a rule q → aq′ for every δ(q, a) = q′, and

a rule q → ε for every q ∈ F .

(We can eliminate forbidden epsilon rules as described in Ch. B2.)
. . .

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q
′
n ∈ F and δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n}

iff there is a sequence of variables q′0, q
′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G)

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Exercise

q0q1 q2
0

1

0

1

0

1

Specify a regular grammar that generates the
language recognized by this DFA.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Questions

Questions?

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Question

Is the inverse true as well:
for every regular language, is there a

DFA that recognizes it? That is, are the
languages recognized by DFAs exactly

the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Question

Is the inverse true as well:
for every regular language, is there a

DFA that recognizes it? That is, are the
languages recognized by DFAs exactly

the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof illustration:

Consider G = ⟨{S,A,B}, {a, b},R,S⟩ with the following rules in R:

S → ε S → aA A → aA A → aB

A → a B → bB B → b

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.

Let G = ⟨V ,Σ,R,S⟩ be a regular grammar.
Define NFA M = ⟨Q,Σ, δ, q0,F ⟩ with

Q = V ∪ {X}, X ̸∈ V

q0 = S

F =

{
{S ,X} if S → ε ∈ R

{X} if S → ε ̸∈ R

B ∈ δ(A, a) if A → aB ∈ R

X ∈ δ(A, a) if A → a ∈ R

. . .

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G)

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ F iff S → ε ∈ R.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is recognized by a DFA.
L regular ⇐⇒ L is recognized by an NFA.

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Questions

Questions?

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Summary

Introduction DFAs vs. NFAs Finite Automata vs. Regular Languages Summary

Summary

DFAs and NFAs recognize the same languages.

These are exactly the regular languages.

	Introduction
	

	DFAs vs. NFAs
	

	Finite Automata vs. Regular Languages
	

	Summary

