Theory of Computer Science
 B2. Regular Grammars: ε-Rules

Gabriele Röger
University of Basel

March 11, 2024

Content of the Course

Recap

Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle V, \Sigma, R, S\rangle$ with

- V finite set of variables (nonterminal symbols)
- Σ finite alphabet of terminal symbols with $V \cap \Sigma=\emptyset$
- $R \subseteq(V \times(\Sigma \cup \Sigma V)) \cup\{\langle S, \varepsilon\rangle\}$ finite set of rules
- if $S \rightarrow \varepsilon \in R$, there is no $X \in V, y \in \Sigma$ with $X \rightarrow y S \in R$
- $S \in V$ start variable.

Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle V, \Sigma, R, S\rangle$ with

- V finite set of variables (nonterminal symbols)

■ Σ finite alphabet of terminal symbols with $V \cap \Sigma=\emptyset$

- $R \subseteq(V \times(\Sigma \cup \Sigma V)) \cup\{\langle S, \varepsilon\rangle\}$ finite set of rules
- if $S \rightarrow \varepsilon \in R$, there is no $X \in V, y \in \Sigma$ with $X \rightarrow y S \in R$
- $S \in V$ start variable.

Rule $X \rightarrow \varepsilon$ is only allowed if $X=S$ and S never occurs in the right-hand side of a rule.

Question (Slido)

With a regular grammar, how many steps does it take to derive a non-empty word (over Σ) from the start variable?

Recap: Regular Languages

A language is regular if it is generated by some regular grammar.

Definition (Regular Language)

A language $L \subseteq \Sigma^{*}$ is regular
if there exists a regular grammar G with $\mathcal{L}(G)=L$.

Epsilon Rules

Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle V, \Sigma, R, S\rangle$ with

- V finite set of variables (nonterminal symbols)

■ Σ finite alphabet of terminal symbols with $V \cap \Sigma=\emptyset$

- $R \subseteq(V \times(\Sigma \cup \Sigma V)) \cup\{\langle S, \varepsilon\rangle\}$ finite set of rules
- if $S \rightarrow \varepsilon \in R$, there is no $X \in V, y \in \Sigma$ with $X \rightarrow y S \in R$
- $S \in V$ start variable.

Rule $X \rightarrow \varepsilon$ is only allowed if $X=S$ and S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ε as right-hand side of a rule, what does this change?

Our Plan

We are going to show that every grammar with rules
$R \subseteq V \times(\Sigma \cup \Sigma V \cup\{\varepsilon)\}$
generates a regular language.

Question

Question

Both variants (restricting the occurrence of ε on the right-hand side of rules or not) characterize exactly the regular languages.

In the following situations, which variant would you prefer?

■ You want to prove something for all regular languages.

- You want to specify a grammar to establish that a certain language is regular.
- You want to write an algorithm that takes a grammar for a regular language as input.

Our Plan

We are going to show that every grammar with rules
$R \subseteq V \times(\Sigma \cup \Sigma V \cup\{\varepsilon\})$
generates a regular language.

- The proof will be constructive, i. e. it will tell us how to construct a regular grammar for a language that is given by such a more general grammar.
- Two steps:
(1) Eliminate the start variable from the right-hand side of rules.
(2) Eliminate forbidden occurrences of ε.

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

Theorem

For every grammar $G=\langle V, \Sigma, R, S\rangle$ there is a grammar $G^{\prime}=\left\langle V^{\prime}, \Sigma, R^{\prime}, S\right\rangle$ with rules
$R^{\prime} \subseteq\left(V^{\prime} \cup \Sigma\right)^{*} V^{\prime}\left(V^{\prime} \cup \Sigma\right)^{*} \times\left(V^{\prime} \backslash\{S\} \cup \Sigma\right)^{*}$ such that $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.

Note: this theorem is true for all grammars.

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea.
Consider $G=\langle\{\mathrm{S}, \mathrm{X}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$\mathrm{bS} \rightarrow \varepsilon$
$S \rightarrow$ XabS
$\mathrm{bX} \rightarrow \mathrm{aSa}$
$X \rightarrow$ abc

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea.
Consider $G=\langle\{\mathrm{S}, \mathrm{X}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$\mathrm{bS} \rightarrow \varepsilon$
$S \rightarrow X a b S$
$\mathrm{bX} \rightarrow \mathrm{aSa}$
$X \rightarrow$ abc

The new grammar has all original rules except that S is replaced with a new variable S' (allowing to derive everything from S' that could originally be derived from the start variable S):
bS' $\rightarrow \varepsilon$
$S^{\prime} \rightarrow$ XabS'
$\mathrm{bX} \rightarrow \mathrm{aS}$ 'a
$X \rightarrow$ abc

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea.
Consider $G=\langle\{\mathrm{S}, \mathrm{X}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$\mathrm{bS} \rightarrow \varepsilon$
$S \rightarrow$ XabS
$\mathrm{bX} \rightarrow \mathrm{aSa}$
$X \rightarrow$ abc

The new grammar has all original rules except that S is replaced with a new variable S' (allowing to derive everything from S' that could originally be derived from the start variable S):
bS' $\rightarrow \varepsilon$
$S^{\prime} \rightarrow$ XabS'
$\mathrm{bX} \rightarrow \mathrm{aS}{ }^{\prime} \mathrm{a}$
$X \rightarrow$ abc

In addition, it has rules that allow to start from the original start variable but switch to S^{\prime} after the first rule application:
$S \rightarrow$ XabS'

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G=\langle V, \Sigma, R, S\rangle$ be a grammar and $S^{\prime} \notin V$ be a new variable.
Construct rule set R^{\prime} from R as follows:

- for every rule $r \in R$, add a rule r^{\prime} to R^{\prime}, where r^{\prime} is the result of replacing all occurences of S in r with S^{\prime}.
■ for every rule $S \rightarrow w \in R$, add a rule $S \rightarrow w^{\prime}$ to R^{\prime}, where w^{\prime} is the result of replacing all occurences of S in w with S^{\prime}.
Then $\mathcal{L}(G)=\mathcal{L}\left(\left\langle V \cup\left\{S^{\prime}\right\}, \Sigma, R^{\prime}, S\right\rangle\right)$.

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G=\langle V, \Sigma, R, S\rangle$ be a grammar and $S^{\prime} \notin V$ be a new variable.
Construct rule set R^{\prime} from R as follows:

- for every rule $r \in R$, add a rule r^{\prime} to R^{\prime}, where r^{\prime} is the result of replacing all occurences of S in r with S^{\prime}.
■ for every rule $S \rightarrow w \in R$, add a rule $S \rightarrow w^{\prime}$ to R^{\prime}, where w^{\prime} is the result of replacing all occurences of S in w with S^{\prime}.

Then $\mathcal{L}(G)=\mathcal{L}\left(\left\langle V \cup\left\{S^{\prime}\right\}, \Sigma, R^{\prime}, S\right\rangle\right)$.
Note that the rules in R^{\prime} are not fundamentally different from the rules in R. In particular:

■ If $R \subseteq V \times(\Sigma \cup \Sigma V \cup\{\varepsilon\})$ then $R^{\prime} \subseteq V^{\prime} \times\left(\Sigma \cup \Sigma V^{\prime} \cup\{\varepsilon\}\right)$.

- If $R \subseteq V \times(V \cup \Sigma)^{*}$ then $R^{\prime} \subseteq V^{\prime} \times\left(V^{\prime} \cup \Sigma\right)^{*}$.

Epsilon Rules

Theorem

For every grammar G with rules $R \subseteq V \times(\Sigma \cup \Sigma V \cup\{\varepsilon\})$ there is a regular grammar G^{\prime} with $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.

Epsilon Rules: Example

Let's again first illustrate the idea.Consider
$G=\langle\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$S \rightarrow \varepsilon \quad S \rightarrow a X \quad X \rightarrow a X \quad X \rightarrow a Y \quad Y \rightarrow b Y \quad Y \rightarrow \varepsilon$

Epsilon Rules: Example

Let's again first illustrate the idea.Consider
$G=\langle\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :

$$
\mathrm{S} \rightarrow \varepsilon \quad \mathrm{~S} \rightarrow \mathrm{aX} \quad \mathrm{X} \rightarrow \mathrm{aX} \quad \mathrm{X} \rightarrow \mathrm{aY} \quad \mathrm{Y} \rightarrow \mathrm{bY} \quad \mathrm{Y} \rightarrow \varepsilon
$$

(1) The start variable does not occur on a right-hand side.

Epsilon Rules: Example

Let's again first illustrate the idea.Consider
$G=\langle\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$S \rightarrow \varepsilon \quad S \rightarrow a X \quad X \rightarrow a X \quad X \rightarrow a Y \quad Y \rightarrow b Y \quad Y \rightarrow \varepsilon$
(1) The start variable does not occur on a right-hand side.
(2) Determine the set of variables that can be replaced with the empty word: $V_{\varepsilon}=\{S, Y\}$.

Epsilon Rules: Example

Let's again first illustrate the idea.Consider
$G=\langle\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$S \rightarrow \varepsilon \quad S \rightarrow a X \quad X \rightarrow a X \quad X \rightarrow a Y \quad Y \rightarrow b Y \quad Y \rightarrow \varepsilon$
(1) The start variable does not occur on a right-hand side.
(2) Determine the set of variables that can be replaced with the empty word: $V_{\varepsilon}=\{S, Y\}$.
(3) Eliminate forbidden rules: $X / / H| | \notin$

Epsilon Rules: Example

Let's again first illustrate the idea.Consider
$G=\langle\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :
$S \rightarrow \varepsilon \quad S \rightarrow a X \quad X \rightarrow a X \quad X \rightarrow a Y \quad Y \rightarrow b Y \quad Y \rightarrow \varepsilon$
(1) The start variable does not occur on a right-hand side.
(2) Determine the set of variables that can be replaced with the empty word: $V_{\varepsilon}=\{S, Y\}$.
(3) Eliminate forbidden rules: $X / / H P / \notin$
(9) If a variable from V_{ε} occurs in the right-hand side, add another rule that directly emulates a subsequent replacement with the empty word: $\mathrm{X} \rightarrow \mathrm{a}$ and $\mathrm{Y} \rightarrow \mathrm{b}$

Epsilon Rules

Theorem

For every grammar G with rules $R \subseteq V \times(\Sigma \cup \Sigma V \cup\{\varepsilon\})$ there is a regular grammar G^{\prime} with $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.

Proof.

Let $G=\langle V, \Sigma, R, S\rangle$ be a grammar s.t. $R \subseteq V \times(\Sigma \cup \Sigma V \cup\{\varepsilon\})$. Use the previous proof to construct grammar $G^{\prime}=\left\langle V^{\prime}, \Sigma, R^{\prime}, S\right\rangle$ s.t. $R^{\prime} \subseteq V^{\prime} \times\left(\Sigma \cup \Sigma\left(V^{\prime} \backslash\{S\}\right) \cup\{\varepsilon\}\right)$ and $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$. Let $V_{\varepsilon}=\left\{A \mid A \rightarrow \varepsilon \in R^{\prime}\right\}$.
Let $R^{\prime \prime}$ be the rule set that is created from R^{\prime} by removing all rules of the form $A \rightarrow \varepsilon(A \neq S)$. Additionally, for every rule of the form $B \rightarrow x A$ with $A \in V_{\varepsilon}, B \in V^{\prime}, x \in \Sigma$ we add a rule $B \rightarrow x$ to $R^{\prime \prime}$. Then $G^{\prime \prime}=\left\langle V^{\prime}, \Sigma, R^{\prime \prime}, S\right\rangle$ is regular and $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime \prime}\right)$.

Questions

Questions?

Exercise (Slido)

Consider $G=\langle\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\},\{\mathrm{a}, \mathrm{b}\}, R, \mathrm{~S}\rangle$ with the following rules in R :

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \varepsilon & \mathrm{~S} \rightarrow \mathrm{aX} \\
\mathrm{X} \rightarrow \mathrm{aX} & \mathrm{X} \rightarrow \mathrm{aY} \\
\mathrm{Y} \rightarrow \mathrm{bY} & \mathrm{Y} \rightarrow \varepsilon
\end{array}
$$

■ Is G a regular grammar?
■ Is $\mathcal{L}(G)$ regular?

Summary

Summary

- Regular grammars restrict the usage of ε in rules.

■ This restriction is not necessary for the characterization of regular languages but convenient if we want to prove something for all regular languages.

