
B1. Formal Languages & Grammars

Introduction

B1.1 Introduction

Theory of Computer Science

March 6, 2024 8 / 36

March 6, 2024

6 / 36

Formal Languages

Introduction

Alphabets and Formal Languages

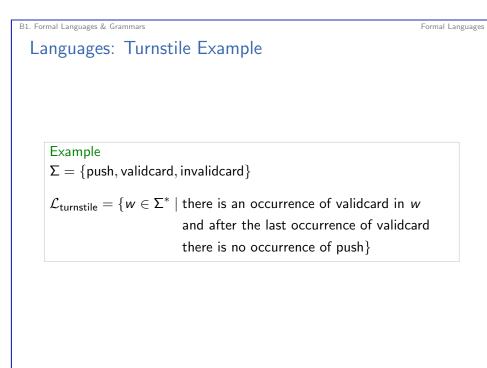
Definition (Alphabets, Words and Formal Languages) An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ . The empty word (the empty sequence of elements) is denoted by ε . Σ^* denotes the set of all words over Σ .

 Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

Theory of Computer Science

We write |w| for the length of a word w.


A formal language (over alphabet Σ) is a subset of Σ^* .

Example

 $\Sigma = \{a, b\}$ $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, \dots\}$ $|aba| = 3, |b| = 1, |\varepsilon| = 0$

Gabriele Röger (University of Basel)

March 6, 2024

B1. Formal Languages & Grammars

Languages: Examples

Formal Languages


Example (Languages over $\Sigma = \{a, b\}$)

- ▶ $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- \blacktriangleright $S_2 = \Sigma^*$
- ► $S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, ...\}$
- $S_4 = \{\varepsilon\}$ $\blacktriangleright S_5 = \emptyset$
- $S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ $= \{\varepsilon, aab, aba, baa, \dots\}$
- ► $S_7 = \{w \in \Sigma^* \mid |w| = 3\}$ = {aaa, aab, aba, baa, bba, bab, abb, bbb}

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6, 2024 10 / 36

Formal Languages

9 / 36

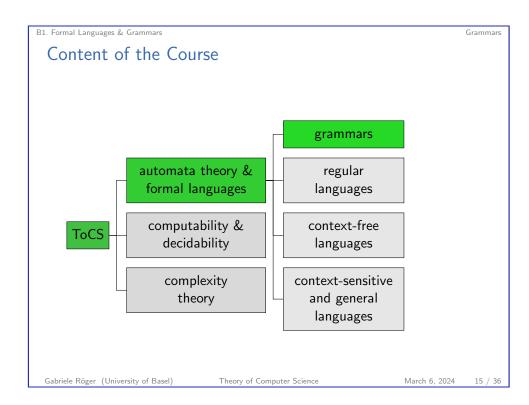
Gabriele Röger (University of Basel)

Ways to Specify Formal Languages?

Sought: General concepts to define (often infinite) formal languages with finite descriptions.

Formal Languages

March 6, 2024


13 / 36

► today: grammars

Gabriele Röger (University of Basel)

later: automata, regular expressions,

Theory of Computer Science

B1. Formal Languages & Grammars			Grammars
B1.3 Gramm	lars		
Gabriele Röger (University of Basel)	Theory of Computer Science	March 6, 2024	14 / 36

B1. Formal Languages & Grammars		Grammars
Grammar: Exan	nple	
Variables $V=\{S_{n}^{2}, N_{n}^{2}\}$ Alphabet $\Sigma=\{s_{n}^{2}\}$ Production rules	a, b, c}.	
$S\to\varepsilon$	$X \to aXYc$	$cY\toYc$
$S \to \mathtt{abc}$	$X \to \mathtt{abc}$	$\texttt{bY} \to \texttt{bb}$
$S\toX$		
		ep replace the left-hand side of e same rule. This way, derive a

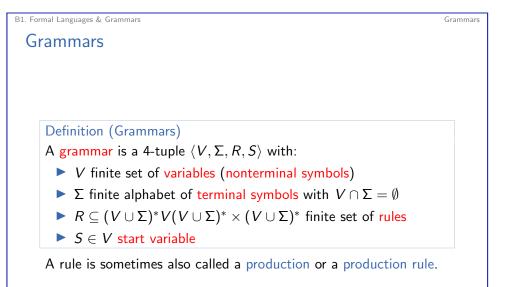
B1. Formal Languages & Grammars

B1. Formal Languages & Grammars

Exercise

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}.$ Production rules:

> $\mathsf{S} \to \varepsilon \mid \mathsf{abc} \mid \mathsf{X}$ $X \rightarrow aXYc \mid abc$ $cY \rightarrow Yc$ $bY \rightarrow bb$


Grammars

Derive word aabbcc starting from S.

Gabriele Röger (University of Basel)

Theory of Computer Science

March 6, 2024 18 / 36

Gabriele Röger (University of Basel)

Gabriele Röger (University of Basel)

Rule Sets What exactly does $R \subseteq (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ mean? • $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$ \blacktriangleright for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$ • $(V \cup \Sigma)^* V (V \cup \Sigma)^*$: words composed from \blacktriangleright a word over ($V \cup \Sigma$), followed by a single variable symbol. Followed by a word over $(V \cup \Sigma)$ \rightarrow word over ($V \cup \Sigma$) containing at least one variable symbol X: Cartesian product • $(V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$: set of all pairs $\langle x, y \rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over ($V \cup \Sigma$) lnstead of $\langle x, y \rangle$ we usually write rules in the form $x \to y$. Gabriele Röger (University of Basel) Theory of Computer Science March 6, 2024 21 / 36

(i.e., by using n derivations for $n \in \mathbb{N}_0$).

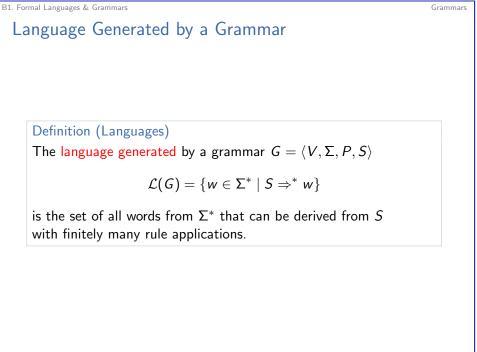
B1. Formal Languages & Grammars

Rules: Examples

Some examples of rules in $(V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

Example

 $X \rightarrow XaY$ $Yb \rightarrow a$ $XY \rightarrow \varepsilon$ $XYZ \rightarrow abc$ $abXc \rightarrow XYZ$


Let $\Sigma = \{a, b, c\}$ and $V = \{X, Y, Z\}$.

Gabriele Röger (University of Basel)

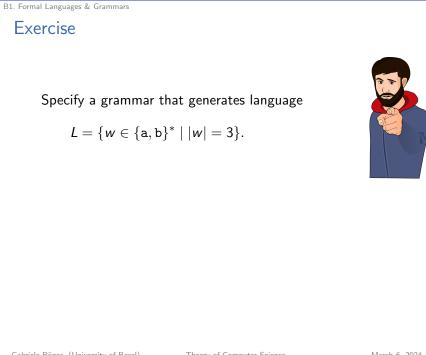
Theory of Computer Science

March 6, 2024 22 / 36

Grammars

Grammars

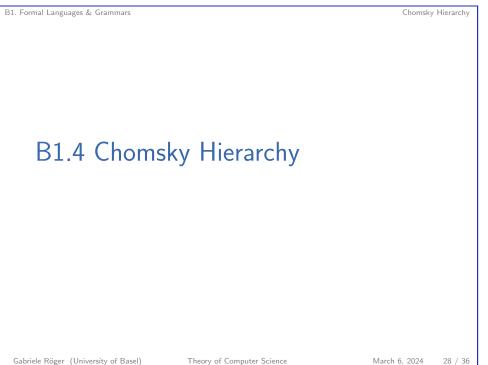
Grammars



Gabriele Röger (University of Basel)

Grammars

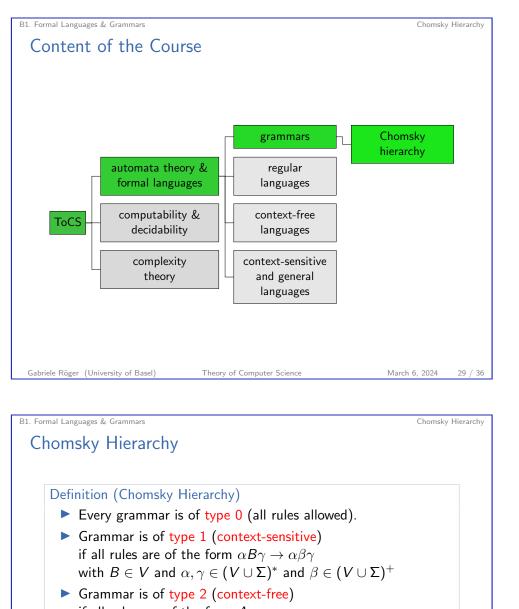
Example (Languages over $\Sigma = \{a, b\}$) ▶ $L_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$ \blacktriangleright $I_2 = \Sigma^*$ ▶ $L_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$ $\blacktriangleright L_4 = \{\varepsilon\}$ \blacktriangleright $L_5 = \emptyset$ • $L_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ $= \{\varepsilon, aab, aba, baa, \dots\}$ Example grammars: blackboard


Theory of Computer Science


```
B1. Formal Languages & Grammars
```

Grammars

Example (Turnstile) $G = \langle \{S, U\}, \{push, validcard, invalidcard\}, R, S \rangle$ with the following production rules in R: $S \to \mathtt{push}\,S$ validcard, push, Jinvalidcard invalidcard () validcard $S \rightarrow \texttt{invalidcard}\,S$ locked unlocked $S \rightarrow validcard U$ $\mathsf{U} \to \texttt{invalidcard}\,\mathsf{U}$ push $\mathsf{U} \to \texttt{validcard}\,\mathsf{U}$ $U \rightarrow \varepsilon$ $U \to \mathtt{push}\,S$ $\mathcal{L}(G) = \mathcal{L}_{turnstile}$ from section "formal languages" Gabriele Röger (University of Basel) Theory of Computer Science March 6, 2024 26 / 36


March 6, 2024

25 / 36

Grammars

Grammars

Grammars

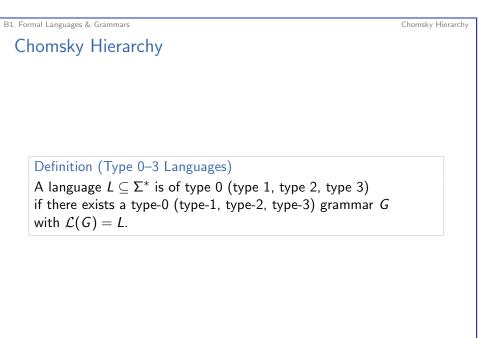
- if all rules are of the form A o w, where $A \in V$ and $w \in (V \cup \Sigma)^+$.
- Grammar is of type 3 (regular) if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in \Sigma \cup \Sigma V$.

special case: rule $S \to \varepsilon$ is always allowed if S is the start variable and never occurs on the right-hand side of any rule.

- Avram Noam Chomsky (*1928)
- "the father of modern linguistics"
- American linguist, philosopher, cognitive scientist, social critic, and political activist

- combined linguistics, cognitive science and computer science
- opponent of U.S. involvement in the Vietnam war
- there is a Wikipedia page solemnly on his political positions

Theory of Computer Science


 \rightarrow Organized grammars into the Chomsky hierarchy.

Gabriele Röger (University of Basel)

March

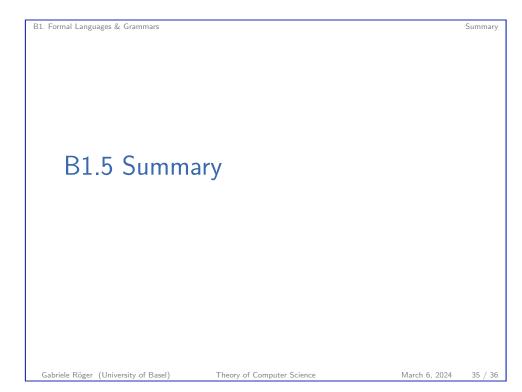
March 6, 2024 30 / 36

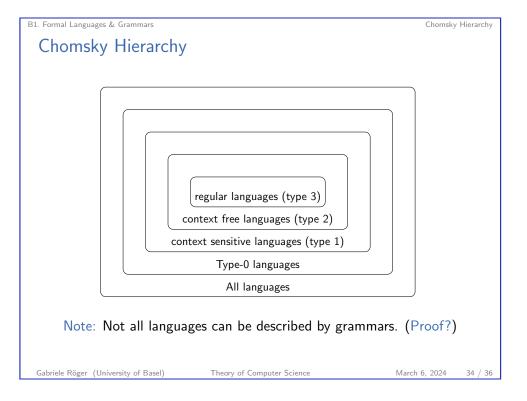
Chomsky Hierarchy

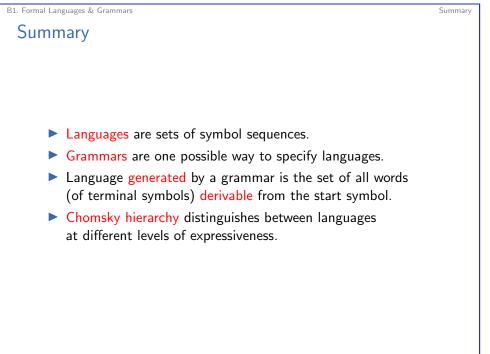
Theory of Computer Science

Chomsky Hierarchy

Type k Language: Example (slido)


Example


Consider the language *L* generated by the grammar $\langle \{F, A, N, C, D\}, \{a, b, c, \neg, \land, \lor, (,)\}, R, F \rangle$ with the following rules *R*: $F \rightarrow A \qquad A \rightarrow a \qquad N \rightarrow \neg F$ $F \rightarrow N \qquad A \rightarrow b \qquad C \rightarrow (F \land F)$ $F \rightarrow C \qquad A \rightarrow c \qquad D \rightarrow (F \lor F)$


Questions:

 $\mathsf{F}
ightarrow \mathsf{D}$

Gabriele Röger (University of Basel)