Theory of Computer Science A3. Proof Techniques

Gabriele Röger

University of Basel

March 4, 2024

ıction	Direct Proof	
000000		

Structural Induction

Summary 00

Introduction

Introdu

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

What is a statement?

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is **true** if the conclusions are true whenever the preconditions are true.

Notes:

- set of preconditions is sometimes empty
- often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption" is also used with another meaning (→ cf. indirect proofs)

Introduction

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with $p \ge 3$ be a prime number. Then p is odd."
- "All prime numbers *p* ≥ 3 are odd."
- "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "

What are the preconditions, what are the conclusions?

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

We can use:

Introduction

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
 - Iemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

What is a Logical Step?

Introduction

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

What is a Logical Step?

Introduction

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

Introduction 00000000000 Direct Proof 0000 Indirect Proof

Structural Induction

Summary 00

The Role of Definitions

Definition

A set is an unordered collection of distinct objects. The set that does not contain any objects is the *empty set* \emptyset .

The Role of Definitions

Definition

A set is an unordered collection of distinct objects. The set that does not contain any objects is the *empty set* \emptyset .

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summary
00000000000	0000	0000		00
Disproofs				

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.
- Formally, disproofs are proofs of modified ("negated") statements.
- Be careful about how to negate a statement!

Introduction 00000000000 Direct Proo

Indirect Proof

Structural Induction

Summary 00

Exercise

You want to disprove the following statement with a counterexample:

If the sun is shining then all kids eat ice cream.

What properties must your counterexample have?

[Discuss with your neighbour; 2 minutes]

- "All x ∈ S with the property P also have the property Q."
 "For all x ∈ S: if x has property P, then x has property Q."
 - To prove, assume you are given an arbitrary x ∈ S that has the property P. Give a sequence of proof steps showing that x
 - must have the property Q.
 - To disprove, find a counterexample, i. e., find an *x* ∈ *S* that has property *P* but not *Q* and prove this.

- "A is a subset of B."
 - To prove, assume you have an arbitrary element *x* ∈ *A* and prove that *x* ∈ *B*.
 - To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

- "For all x ∈ S: x has property P iff x has property Q." ("iff": "if and only if")
 - To prove, separately prove "if P then Q" and "if Q then P".
 - To disprove, disprove "if P then Q" or disprove "if Q then P".

- "A = B", where A and B are sets.
 - To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
 - To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Proof Techniques

proof techniques we use in this course:

- direct proof
- indirect proof (proof by contradiction)
- structural induction

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summ
0000000000	●000	0000		00

Direct Proof

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summary
0000000000	0●00	0000	00000000	00
Direct Proof	r			

Direct Proof

Direct derivation of the statement by deducing or rewriting.

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summary
0000000000	00●0	0000		00

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

. . .

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

. . .

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa. Thus, both sets are equal.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

Alternative:

$$A \cap (B \cup C) = \{x \mid x \in A \text{ and } x \in B \cup C\}$$

= $\{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$
= $\{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\}$
= $\{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$
= $(A \cap B) \cup (A \cap C)$

Introduction 00000000000 Direct Proof

Indirect Proof

Structural Induction

Summary 00

Questions

Questions?

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summary
00000000000	0000	●000		00

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Derive a contradiction from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

Theore<u>m</u>

There are infinitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers. Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers. Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \ldots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor. Let p be such a prime factor.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \ldots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers.

Define
$$m = p_1 \cdot \ldots \cdot p_n + 1$$
.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder by any of the numbers in P. Hence p is no factor of m.

→ Contradiction

Introduction 00000000000 Direct Proo

Indirect Proof

Structural Induction

Summary 00

Questions

Questions?

Direct Proof

Indirect Proof

Structural Induction

Summary 00

Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If *n* is a natural number, then n + 1 is a natural number.

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If *n* is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- □ is a binary tree (a leaf)
- If L and R are binary trees, then ⟨L, ○, R⟩ is a binary tree (with inner node ○).

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If *n* is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- □ is a binary tree (a leaf)
- If L and R are binary trees, then ⟨L, ○, R⟩ is a binary tree (with inner node ○).

Implicit statement: all elements of the set can be constructed by finite application of these rules Direct Pro 0000 Indirect Proof

Structural Induction

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form
 "Given some elements of *M*, another element of *M* can be constructed like this."

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):

suppose that the statement is true for some elements M

 inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B), is defined as follows:

$$leaves(\Box) = 1$$

 $leaves(\langle L, \bigcirc, R \rangle) = leaves(L) + leaves(R)$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B), is defined as follows:

$$inner(\Box) = 0$$

 $inner(\langle L, \bigcirc, R \rangle) = inner(L) + inner(R) + 1$

Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B) - 1.

. . .

Structural Induction: Example (2)

Theorem

For all binary trees B:
$$inner(B) = leaves(B) - 1$$
.

Proof.

induction basis:

$$inner(\Box) = 0 = 1 - 1 = leaves(\Box) - 1$$

 \rightsquigarrow statement is true for base case

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree (L, \bigcirc, R) , we may use that it is true for the subtrees L and R.

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree (L, \bigcirc, R) , we may use that it is true for the subtrees L and R.

inductive step for $B = \langle L, \bigcirc, R \rangle$:

$$\begin{aligned} \mathsf{inner}(B) &= \mathsf{inner}(L) + \mathsf{inner}(R) + 1 \\ &\stackrel{\mathsf{IH}}{=} (\mathsf{\mathit{leaves}}(L) - 1) + (\mathsf{\mathit{leaves}}(R) - 1) + 1 \\ &= \mathsf{\mathit{leaves}}(L) + \mathsf{\mathit{leaves}}(R) - 1 = \mathsf{\mathit{leaves}}(B) - 1 \end{aligned}$$

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B), is defined as follows:

$$height(\Box) = 0$$

 $height(\langle L, \bigcirc, R \rangle) = \max\{height(L), height(R)\} + 1$

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) $\leq 2^{\text{height}(B)}$.

Introduction 00000000000 Direct Proof

Indirect Proof

Structural Induction

Summary 00

Questions

Questions?

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summ
0000000000	0000	0000		●0

Summary

Introduction	Direct Proof	Indirect Proof	Structural Induction	Summary
00000000000	0000	0000		○●
-				

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement

Summary

structural induction: generalization of mathematical induction to arbitrary recursive structures