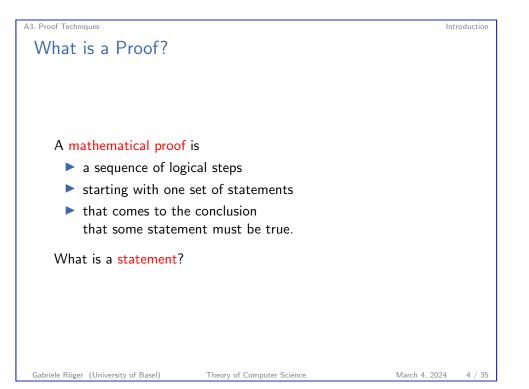


Theory of Computer March 4, 2024 — A3. Proof T		
A3.1 Introduction	1	
A3.2 Direct Proo	f	
A3.3 Indirect Pro	of	
A3.4 Structural In	nduction	
A3.5 Summary		
Gabriele Röger (University of Basel)	Theory of Computer Science	March 4, 2024 2 / 35



Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is **true** if the conclusions are true whenever the preconditions are true.

Notes:

- set of preconditions is sometimes empty
- often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption" is also used with another meaning (~> cf. indirect proofs)

Gabriele Röger (University of Basel)

Theory of Computer Science

A3. Proof Techniques

On what Statements can we Build the Proof?

A mathematical proof is

- ► a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

We can use:

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
 - lemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

March 4, 2024

5 / 35

Introduction

Introduction

A3. Proof Techniques

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with $p \ge 3$ be a prime number. Then p is odd."
- ▶ "All prime numbers $p \ge 3$ are odd."
- ▶ "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "

Theory of Computer Science

What are the preconditions, what are the conclusions?

Gabriele Röger (University of Basel)

Gabriele Röger (University of Basel)

March 4, 2024

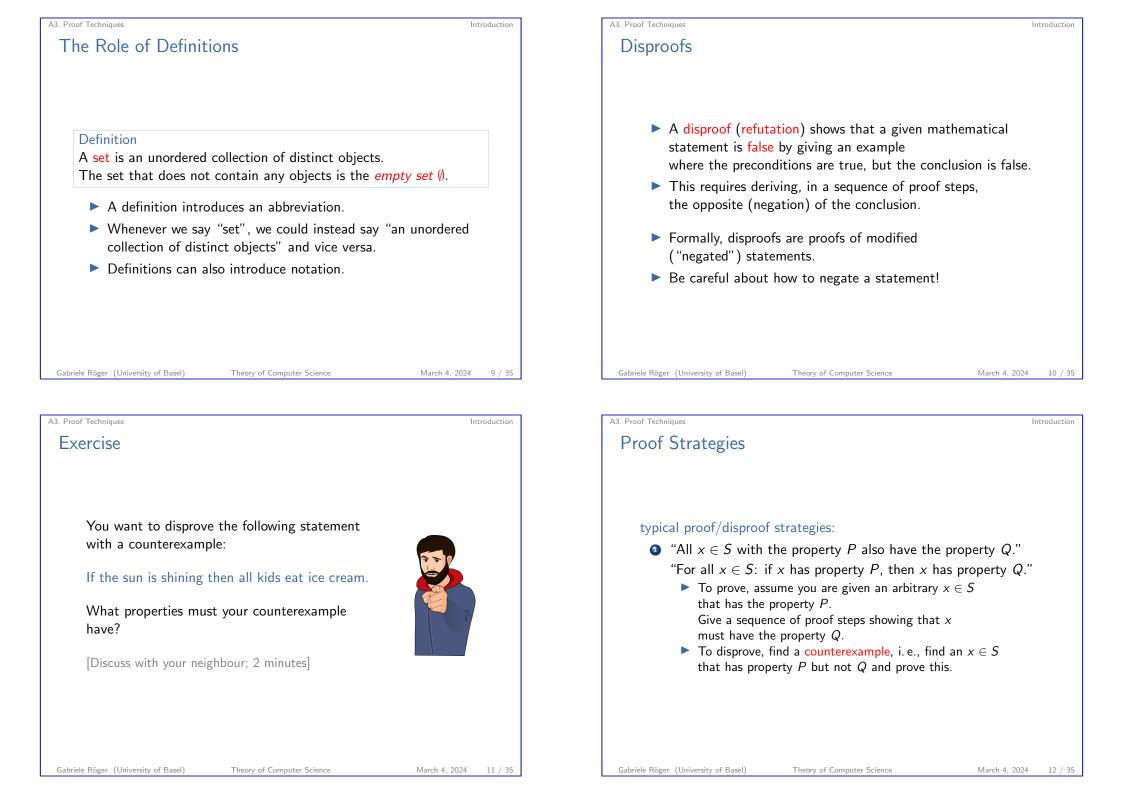
March 4, 2024

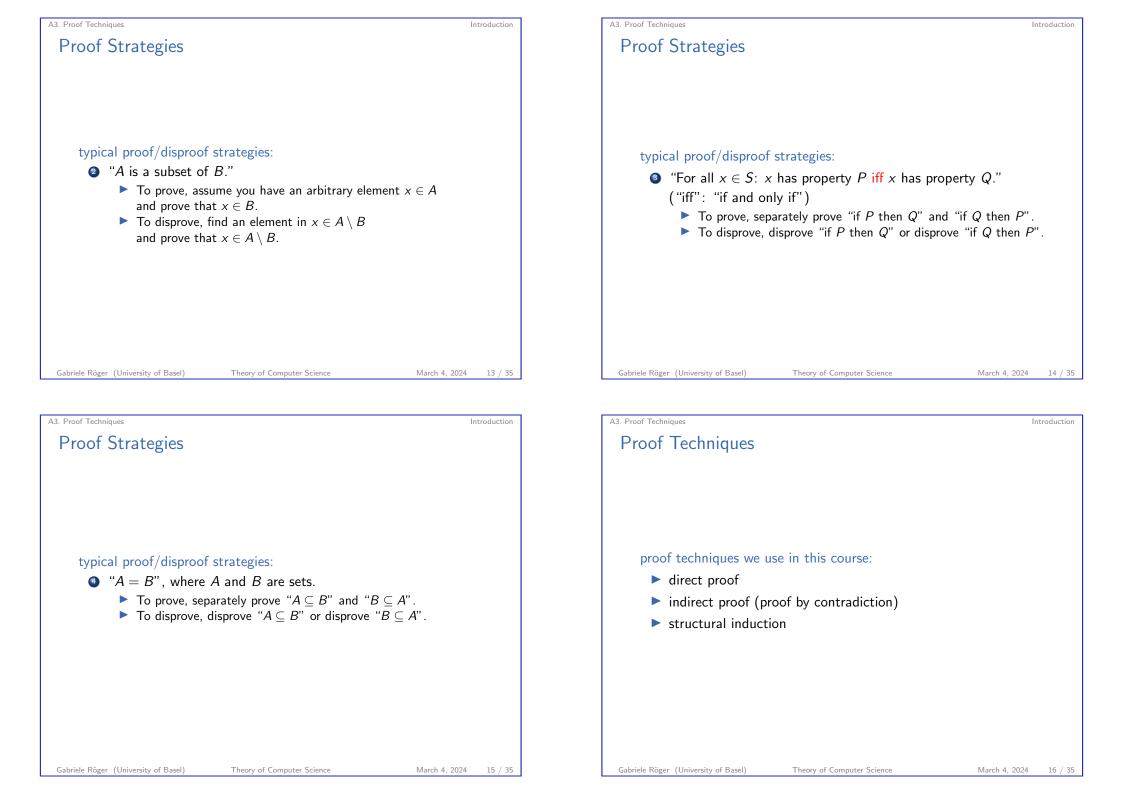
8 / 35

6 / 35

. Proof Techniques	Introduction
What is a Logical Step?	
A mathematical proof is	
a sequence of logical steps	
starting with one set of statements	
that comes to the conclusion	
that some statement must be true.	
Each step directly follows	
from the axioms,	
premises,	
previously proven statements and	
the preconditions of the statement we want to prove.	
For a formal definition, we would need formal logics.	

Theory of Computer Science





A3. Proof Techniques		Direct Proof
A3.2 Direct	Proof	
Gabriele Röger (University of Basel)	Theory of Computer Science	March 4, 2024 17 / 35

A3. Proof Techniques

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

```
In both cases x \in A \cap B or x \in A \cap C,
and we conclude x \in (A \cap B) \cup (A \cap C).
```

. . .

Direct Proof

A3. Proof Techniques Direct Proof: Example Theorem (distributivity) For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Proof (continued). \supset part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C).$ Let $x \in (A \cap B) \cup (A \cap C)$. We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$: If $x \in A \cap B$ then $x \in A$ and $x \in B$. The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$. If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$. In both cases we conclude $x \in A \cap (B \cup C)$ Gabriele Röger (University of Basel) Theory of Computer Science

Indirect Proof

25 / 35

Indirect Proof: Example

Theorem

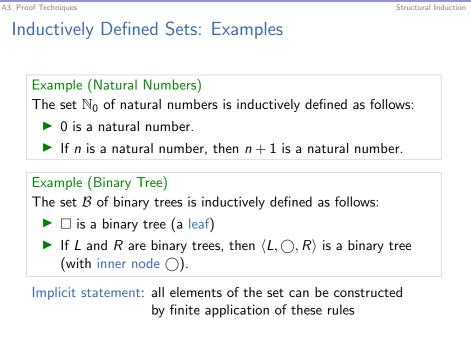
There are infinitely many prime numbers.

Proof.

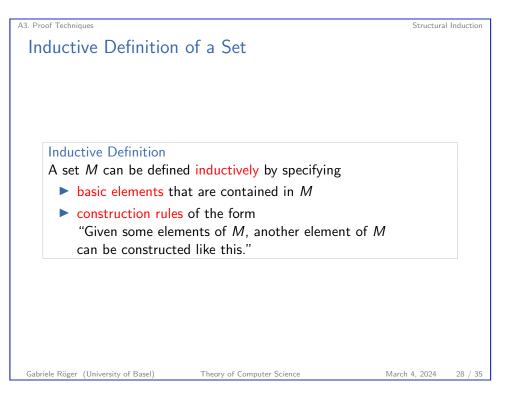
Assumption: There are only finitely many prime numbers. Let $P = \{p_1, \ldots, p_n\}$ be the set of all prime numbers. Define $m = p_1 \cdot \ldots \cdot p_n + 1$. Since $m \ge 2$, it must have a prime factor. Let p be such a prime factor. Since p is a prime number, p has to be in P. The number m is not divisible without remainder by any of the numbers in P. Hence p is no factor of m. \rightsquigarrow Contradiction

Gabriele Röger (University of Basel)

Theory of Computer Science March 4, 2024



A3. Proof Techniques		Structural	Induction
A3.4 Structu	ral Induction		
Gabriele Röger (University of Basel)	Theory of Computer Science	March 4, 2024	26 / 35



Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):
 suppose that the statement is true for some elements M

Theory of Computer Science

 inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

Gabriele Röger (University of Basel)

March 4, 2024

29 / 35

A3. Proof Techniques Structural Induction: Example (2) Theorem For all binary trees B: inner(B) = leaves(B) - 1. Proof. induction basis: inner(\Box) = 0 = 1 - 1 = leaves(\Box) - 1 \rightsquigarrow statement is true for base case A3. Proof Techniques

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B), is defined as follows:

 $leaves(\Box) = 1$ $leaves(\langle L, \bigcirc, R \rangle) = leaves(L) + leaves(R)$

Definition (Inner Nodes of a Binary Tree) The number of inner nodes of a binary tree *B*, written *inner*(*B*), is defined as follows:

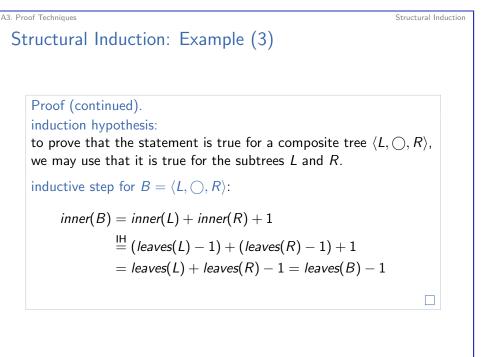
Theory of Computer Science

```
inner(\Box) = 0
inner(\langle L, \bigcirc, R \rangle) = inner(L) + inner(R) + 1
```

```
Gabriele Röger (University of Basel)
```

March 4, 2024 30 / 35

Structural Induction



Theory of Computer Science

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree) The height of a binary tree *B*, written *height*(*B*), is defined as follows:

 $height(\Box) = 0$ $height(\langle L, \bigcirc, R \rangle) = \max\{height(L), height(R)\} + 1$

Prove by structural induction:

For all binary trees B: leaves(B) $\leq 2^{height(B)}$.

March 4, 2024

March 4, 2024

35 / 35

Structural Induction

Gabriele Röger (University of Basel)

Theory of Computer Science

33 / 35

Summarv

Summary

Gabriele Röger (University of Basel)

A3. Proof Techniques

Theorem

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- structural induction: generalization of mathematical induction to arbitrary recursive structures

Theory of Computer Science