Theory of Computer Science
 A3. Proof Techniques

Gabriele Röger
University of Basel

March 4, 2024

Theory of Computer Science

March 4, 2024 - A3. Proof Techniques

A3.1 Introduction

A3.2 Direct Proof

A3.3 Indirect Proof

A3.4 Structural Induction

A3.5 Summary

A3.1 Introduction

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

What is a statement?

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

Notes:

- set of preconditions is sometimes empty
- often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption"
is also used with another meaning (\rightsquigarrow cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_{0}$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_{0}$ with $p \geq 3$ be a prime number. Then p is odd."
- "All prime numbers $p \geq 3$ are odd."
- "For all sets $A, B, C: A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ "

What are the preconditions, what are the conclusions?

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

We can use:

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
- lemma: an intermediate tool
- theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

What is a Logical Step?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

The Role of Definitions

Definition

A set is an unordered collection of distinct objects.
The set that does not contain any objects is the empty set \emptyset.

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

Disproofs

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.
- Formally, disproofs are proofs of modified ("negated") statements.
- Be careful about how to negate a statement!

Exercise

You want to disprove the following statement with a counterexample:

If the sun is shining then all kids eat ice cream.
What properties must your counterexample have?
[Discuss with your neighbour; 2 minutes]

Proof Strategies

typical proof/disproof strategies:

(1) "All $x \in S$ with the property P also have the property Q." "For all $x \in S$: if x has property P, then x has property Q."

- To prove, assume you are given an arbitrary $x \in S$ that has the property P.
Give a sequence of proof steps showing that x must have the property Q.
- To disprove, find a counterexample, i. e., find an $x \in S$ that has property P but not Q and prove this.

Proof Strategies

typical proof/disproof strategies:
(2) " A is a subset of B."

- To prove, assume you have an arbitrary element $x \in A$ and prove that $x \in B$.
- To disprove, find an element in $x \in A \backslash B$ and prove that $x \in A \backslash B$.

Proof Strategies

typical proof/disproof strategies:
(3) "For all $x \in S: x$ has property P iff x has property Q." ("iff": "if and only if")

- To prove, separately prove "if P then Q " and "if Q then P ".
- To disprove, disprove "if P then Q " or disprove "if Q then P ".

Proof Strategies

typical proof/disproof strategies:
(c) " $A=B$ ", where A and B are sets.

- To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
- To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Proof Techniques

proof techniques we use in this course:

- direct proof
- indirect proof (proof by contradiction)
- structural induction

A3.2 Direct Proof

Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.

Direct Proof: Example

Theorem (distributivity)
For all sets $A, B, C: A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proof.

We first show that $x \in A \cap(B \cup C)$ implies
$x \in(A \cap B) \cup(A \cap C)(\subseteq$ part $):$
Let $x \in A \cap(B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:
If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.
Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.
In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in(A \cap B) \cup(A \cap C)$.

Direct Proof: Example

Theorem (distributivity)
For all sets $A, B, C: A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proof (continued).

\supseteq part: we must show that $x \in(A \cap B) \cup(A \cap C)$ implies
$x \in A \cap(B \cup C)$.
Let $x \in(A \cap B) \cup(A \cap C)$.
We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:
If $x \in A \cap B$ then $x \in A$ and $x \in B$.
The latter implies $x \in B \cup C$ and hence $x \in A \cap(B \cup C)$.
If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in(A \cap B) \cup(A \cap C)$.
This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap(B \cup C)$.
In both cases we conclude $x \in A \cap(B \cup C)$.

Direct Proof: Example

Theorem (distributivity)
For all sets $A, B, C: A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
Proof (continued).
We have shown that every element of $A \cap(B \cup C)$ is an element of $(A \cap B) \cup(A \cap C)$ and vice versa. Thus, both sets are equal.

Direct Proof: Example

Theorem (distributivity)
For all sets $A, B, C: A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
Proof.
Alternative:

$$
\begin{aligned}
A \cap(B \cup C) & =\{x \mid x \in A \text { and } x \in B \cup C\} \\
& =\{x \mid x \in A \text { and }(x \in B \text { or } x \in C)\} \\
& =\{x \mid(x \in A \text { and } x \in B) \text { or }(x \in A \text { and } x \in C)\} \\
& =\{x \mid x \in A \cap B \text { or } x \in A \cap C\} \\
& =(A \cap B) \cup(A \cap C)
\end{aligned}
$$

A3.3 Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Derive a contradiction from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

Indirect Proof: Example

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.
Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be the set of all prime numbers.
Define $m=p_{1} \cdot \ldots \cdot p_{n}+1$.
Since $m \geq 2$, it must have a prime factor.
Let p be such a prime factor.
Since p is a prime number, p has to be in P.
The number m is not divisible without remainder by any of the numbers in P. Hence p is no factor of m.
\rightsquigarrow Contradiction

A3.4 Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)
The set \mathbb{N}_{0} of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then $n+1$ is a natural number.

Example (Binary Tree)
The set \mathcal{B} of binary trees is inductively defined as follows:

- \square is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R\rangle$ is a binary tree (with inner node \bigcirc).

Implicit statement: all elements of the set can be constructed by finite application of these rules

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

- basic elements that are contained in M
- construction rules of the form
"Given some elements of M, another element of M can be constructed like this."

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH): suppose that the statement is true for some elements M
- inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves (B), is defined as follows:

```
    leaves(\square)=1
leaves(\langleL,\bigcirc,R\rangle)=leaves(L)+leaves(R)
```


Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner (B), is defined as follows:

$$
\begin{aligned}
\operatorname{inner}(\square) & =0 \\
\operatorname{inner}(\langle L, \bigcirc, R\rangle) & =\operatorname{inner}(L)+\operatorname{inner}(R)+1
\end{aligned}
$$

Structural Induction: Example (2)

Theorem
For all binary trees $B: \operatorname{inner}(B)=$ leaves $(B)-1$.

Proof.

induction basis:
$\operatorname{inner}(\square)=0=1-1=\operatorname{leaves}(\square)-1$
\rightsquigarrow statement is true for base case

Structural Induction: Example (3)

Proof (continued).

induction hypothesis: to prove that the statement is true for a composite tree $\langle L, \bigcirc, R\rangle$, we may use that it is true for the subtrees L and R. inductive step for $B=\langle L, \bigcirc, R\rangle$:

$$
\begin{aligned}
\operatorname{inner}(B) & =\operatorname{inner}(L)+\operatorname{inner}(R)+1 \\
& \stackrel{\text { IH }}{=}(\operatorname{leaves}(L)-1)+(\text { leaves }(R)-1)+1 \\
& =\operatorname{leaves}(L)+\operatorname{leaves}(R)-1=\operatorname{leaves}(B)-1
\end{aligned}
$$

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B), is defined as follows:

$$
\begin{aligned}
\operatorname{height}(\square) & =0 \\
\operatorname{height}(\langle L, \bigcirc, R\rangle) & =\max \{\operatorname{height}(L), \operatorname{height}(R)\}+1
\end{aligned}
$$

Prove by structural induction:
Theorem
For all binary trees B : leaves $(B) \leq 2^{\text {height }(B)}$.

A3.5 Summary

Summary

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- structural induction: generalization of mathematical induction to arbitrary recursive structures

