Theory of Computer Science A3. Proof Techniques

Gabriele Röger

University of Basel

March 4, 2024

Gabriele Röger (University of Basel)

Theory of Computer Science

March 4, 2024 1 / 35

Theory of Computer Science March 4, 2024 — A3. Proof Techniques

A3.1 Introduction

A3.2 Direct Proof

A3.3 Indirect Proof

A3.4 Structural Induction

A3.5 Summary

Gabriele Röger (University of Basel)

A3.1 Introduction

What is a Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

What is a statement?

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

Notes:

- set of preconditions is sometimes empty
- ▶ often, "assumptions" is used instead of "preconditions"; slightly unfortunate because "assumption" is also used with another meaning (~> cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with $p \ge 3$ be a prime number. Then p is odd."
- ► "All prime numbers p ≥ 3 are odd."

▶ "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "

What are the preconditions, what are the conclusions?

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

We can use:

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
 - lemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

What is a Logical Step?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conclusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

Gabriele Röger (University of Basel)

The Role of Definitions

Definition

A set is an unordered collection of distinct objects.

The set that does not contain any objects is the *empty set* \emptyset .

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

Disproofs

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.
- Formally, disproofs are proofs of modified ("negated") statements.
- Be careful about how to negate a statement!

You want to disprove the following statement with a counterexample:

If the sun is shining then all kids eat ice cream.

What properties must your counterexample have?

[Discuss with your neighbour; 2 minutes]

- "All $x \in S$ with the property *P* also have the property *Q*."
 - "For all $x \in S$: if x has property P, then x has property Q."
 - ► To prove, assume you are given an arbitrary x ∈ S that has the property P.
 Give a sequence of proof steps showing that x must have the property Q.
 - ► To disprove, find a counterexample, i. e., find an x ∈ S that has property P but not Q and prove this.

- "A is a subset of B."
 - ► To prove, assume you have an arbitrary element x ∈ A and prove that x ∈ B.
 - To disprove, find an element in x ∈ A \ B and prove that x ∈ A \ B.

- Similar "For all $x \in S$: x has property P iff x has property Q."
 - ("iff": "if and only if")
 - ► To prove, separately prove "if *P* then *Q*" and "if *Q* then *P*".
 - ▶ To disprove, disprove "if P then Q" or disprove "if Q then P".

- "A = B", where A and B are sets.
 - ▶ To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
 - ▶ To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Proof Techniques

proof techniques we use in this course:

- direct proof
- indirect proof (proof by contradiction)
- structural induction

A3.2 Direct Proof

Direct Proof

Direct Proof Direct derivation of the statement by deducing or rewriting.

```
Theorem (distributivity)
```

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in (A \cap B) \cup (A \cap C)$.

. . .

```
Theorem (distributivity)
```

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

```
Proof (continued).
```

⊇ part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

```
Let x \in (A \cap B) \cup (A \cap C).
```

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

```
If x \in A \cap B then x \in A and x \in B.
```

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

. . .

```
Theorem (distributivity)
```

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa. Thus, both sets are equal.

Theorem (distributivity) For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

Alternative:

$$A \cap (B \cup C) = \{x \mid x \in A \text{ and } x \in B \cup C\}$$

= $\{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$
= $\{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\}$
= $\{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$
= $(A \cap B) \cup (A \cap C)$

A3.3 Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Derive a contradiction from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

Theorem There are infinitely many prime numbers.

```
Proof.
Assumption: There are only finitely many prime numbers.
Let P = \{p_1, \ldots, p_n\} be the set of all prime numbers.
Define m = p_1 \cdot \ldots \cdot p_n + 1.
Since m > 2, it must have a prime factor.
Let p be such a prime factor.
Since p is a prime number, p has to be in P.
The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.
~ Contradiction
```

A3.4 Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- ▶ 0 is a natural number.
- If *n* is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- ▶ □ is a binary tree (a leaf)
- If L and R are binary trees, then (L, ○, R) is a binary tree (with inner node ○).

Implicit statement: all elements of the set can be constructed by finite application of these rules

Gabriele Röger (University of Basel)

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form "Given some elements of *M*, another element of *M* can be constructed like this."

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):

suppose that the statement is true for some elements M

 inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree) The number of leaves of a binary tree *B*, written *leaves*(*B*), is defined as follows:

 $leaves(\Box) = 1$ $leaves(\langle L, \bigcirc, R \rangle) = leaves(L) + leaves(R)$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B), is defined as follows:

$$inner(\Box) = 0$$

 $inner(\langle L, \bigcirc, R \rangle) = inner(L) + inner(R) + 1$

Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B) - 1.

Proof. induction basis: $inner(\Box) = 0 = 1 - 1 = leaves(\Box) - 1$ \rightsquigarrow statement is true for base case

Structural Induction: Example (3)

Proof (continued). induction hypothesis: to prove that the statement is true for a composite tree (L, \bigcirc, R) , we may use that it is true for the subtrees L and R. inductive step for $B = \langle L, \bigcirc, R \rangle$: inner(B) = inner(L) + inner(R) + 1 $\stackrel{\text{IH}}{=} (leaves(L) - 1) + (leaves(R) - 1) + 1$ = leaves(L) + leaves(R) - 1 = leaves(B) - 1

Gabriele Röger (University of Basel)

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B), is defined as follows:

$$\begin{aligned} height(\Box) &= 0\\ height(\langle L, \bigcirc, R \rangle) &= \max\{height(L), height(R)\} + 1 \end{aligned}$$

Prove by structural induction:

Theorem For all binary trees B: $leaves(B) \le 2^{height(B)}$.

A3.5 Summary

Summary

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- structural induction: generalization of mathematical induction to arbitrary recursive structures