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A3. Proof Techniques Introduction

What is a Proof?

A mathematical proof is

▶ a sequence of logical steps

▶ starting with one set of statements

▶ that comes to the conclusion
that some statement must be true.

What is a statement?
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A3. Proof Techniques Introduction

Mathematical Statements

Mathematical Statement
A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

Notes:

▶ set of preconditions is sometimes empty

▶ often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning (⇝ cf. indirect proofs)
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Examples of Mathematical Statements

Examples (some true, some false):

▶ “Let p ∈ N0 be a prime number. Then p is odd.”

▶ “There exists an even prime number.”

▶ “Let p ∈ N0 with p ≥ 3 be a prime number. Then p is odd.”

▶ “All prime numbers p ≥ 3 are odd.”

▶ “For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )”

What are the preconditions, what are the conclusions?
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On what Statements can we Build the Proof?

A mathematical proof is

▶ a sequence of logical steps

▶ starting with one set of statements

▶ that comes to the conclusion
that some statement must be true.

We can use:

▶ axioms: statements that are assumed to always be true
in the current context

▶ theorems and lemmas: statements that were already proven
▶ lemma: an intermediate tool
▶ theorem: itself a relevant result

▶ premises: assumptions we make to see
what consequences they have
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What is a Logical Step?

A mathematical proof is

▶ a sequence of logical steps

▶ starting with one set of statements

▶ that comes to the conclusion
that some statement must be true.

Each step directly follows

▶ from the axioms,

▶ premises,

▶ previously proven statements and

▶ the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.
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The Role of Definitions

Definition
A set is an unordered collection of distinct objects.
The set that does not contain any objects is the empty set ∅.

▶ A definition introduces an abbreviation.

▶ Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

▶ Definitions can also introduce notation.
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Disproofs

▶ A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.

▶ This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

▶ Formally, disproofs are proofs of modified
(“negated”) statements.

▶ Be careful about how to negate a statement!
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Exercise

You want to disprove the following statement
with a counterexample:

If the sun is shining then all kids eat ice cream.

What properties must your counterexample
have?

[Discuss with your neighbour; 2 minutes]
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Proof Strategies

typical proof/disproof strategies:

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”
▶ To prove, assume you are given an arbitrary x ∈ S

that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.

▶ To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.
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Proof Strategies

typical proof/disproof strategies:
2 “A is a subset of B.”

▶ To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.

▶ To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.
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Proof Strategies

typical proof/disproof strategies:

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)
▶ To prove, separately prove “if P then Q” and “if Q then P”.
▶ To disprove, disprove “if P then Q” or disprove “if Q then P”.
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Proof Strategies

typical proof/disproof strategies:
4 “A = B”, where A and B are sets.

▶ To prove, separately prove “A ⊆ B” and “B ⊆ A”.
▶ To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.

Gabriele Röger (University of Basel) Theory of Computer Science March 4, 2024 15 / 35



A3. Proof Techniques Introduction

Proof Techniques

proof techniques we use in this course:

▶ direct proof

▶ indirect proof (proof by contradiction)

▶ structural induction
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A3.2 Direct Proof
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Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.
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A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

We first show that x ∈ A ∩ (B ∪ C ) implies
x ∈ (A ∩ B) ∪ (A ∩ C ) (⊆ part):

Let x ∈ A ∩ (B ∪ C ). Then by the definition of ∩ it holds that
x ∈ A and x ∈ B ∪ C .

We make a case distinction between x ∈ B and x /∈ B:

If x ∈ B then, because x ∈ A is true, x ∈ A ∩ B must be true.

Otherwise, because x ∈ B ∪ C we know that x ∈ C and thus with
x ∈ A, that x ∈ A ∩ C .

In both cases x ∈ A ∩ B or x ∈ A ∩ C ,
and we conclude x ∈ (A ∩ B) ∪ (A ∩ C ). . . .
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A3. Proof Techniques Direct Proof

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof (continued).

⊇ part: we must show that x ∈ (A ∩ B) ∪ (A ∩ C ) implies
x ∈ A ∩ (B ∪ C ).

Let x ∈ (A ∩ B) ∪ (A ∩ C ).

We make a case distinction between x ∈ A ∩ B and x /∈ A ∩ B:

If x ∈ A ∩ B then x ∈ A and x ∈ B.
The latter implies x ∈ B ∪ C and hence x ∈ A ∩ (B ∪ C ).

If x /∈ A ∩ B we know x ∈ A ∩ C due to x ∈ (A ∩ B) ∪ (A ∩ C ).
This (analogously) implies x ∈ A and x ∈ C , and hence x ∈ B ∪ C
and thus x ∈ A ∩ (B ∪ C ).

In both cases we conclude x ∈ A ∩ (B ∪ C ). . . .
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof (continued).

We have shown that every element of A ∩ (B ∪ C )
is an element of (A ∩ B) ∪ (A ∩ C ) and vice versa.
Thus, both sets are equal.
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Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.
Alternative:

A ∩ (B ∪ C ) = {x | x ∈ A and x ∈ B ∪ C}
= {x | x ∈ A and (x ∈ B or x ∈ C )}
= {x | (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C )}
= {x | x ∈ A ∩ B or x ∈ A ∩ C}
= (A ∩ B) ∪ (A ∩ C )
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A3.3 Indirect Proof
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Indirect Proof

Indirect Proof (Proof by Contradiction)
▶ Make an assumption that the statement is false.

▶ Derive a contradiction from the assumption
together with the preconditions of the statement.

▶ This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.
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Indirect Proof: Example

Theorem
There are infinitely many prime numbers.

Proof.
Assumption: There are only finitely many prime numbers.

Let P = {p1, . . . , pn} be the set of all prime numbers.

Define m = p1 · . . . · pn + 1.

Since m ≥ 2, it must have a prime factor.
Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder
by any of the numbers in P. Hence p is no factor of m.

⇝ Contradiction
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A3.4 Structural Induction
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Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

▶ 0 is a natural number.

▶ If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

▶ □ is a binary tree (a leaf)

▶ If L and R are binary trees, then ⟨L,⃝,R⟩ is a binary tree
(with inner node ⃝).

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules
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Inductive Definition of a Set

Inductive Definition
A set M can be defined inductively by specifying

▶ basic elements that are contained in M

▶ construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”
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Structural Induction

Structural Induction
Proof of statement for all elements of an inductively defined set

▶ basis: proof of the statement for the basic elements

▶ induction hypothesis (IH):
suppose that the statement is true for some elements M

▶ inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)
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Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(□) = 1

leaves(⟨L,⃝,R⟩) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(□) = 0

inner(⟨L,⃝,R⟩) = inner(L) + inner(R) + 1
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Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.
induction basis:
inner(□) = 0 = 1− 1 = leaves(□)− 1

⇝ statement is true for base case . . .
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Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree ⟨L,⃝,R⟩,
we may use that it is true for the subtrees L and R.

inductive step for B = ⟨L,⃝,R⟩:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1
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Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B),
is defined as follows:

height(□) = 0

height(⟨L,⃝,R⟩) = max{height(L), height(R)}+ 1

Prove by structural induction:

Theorem

For all binary trees B: leaves(B) ≤ 2height(B).
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A3.5 Summary
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Summary

▶ A proof is based on axioms and previously proven statements.

▶ Individual proof steps must be obvious derivations.

▶ direct proof: sequence of derivations or rewriting

▶ indirect proof: refute the negated statement

▶ structural induction: generalization of mathematical induction
to arbitrary recursive structures
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