Theory of Computer Science A2. Mathematical Foundations

Gabriele Röger
University of Basel

February 28, 2024

Sets, Tuples, Relations

Sets

■ set: unordered collection of distinguishable objects; each object contained at most once

Sets

■ set: unordered collection of distinguishable objects; each object contained at most once
■ notations:

- explicit, listing all elements, e.g. $A=\{1,2,3\}$
- implicit, specifying a property characterizing all elements, e.g. $A=\{x \mid x \in \mathbb{N}$ and $1 \leq x \leq 3\}$
- implicit, as a sequence with dots,
e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$

Sets

■ set: unordered collection of distinguishable objects; each object contained at most once
■ notations:

- explicit, listing all elements, e.g. $A=\{1,2,3\}$
- implicit, specifying a property characterizing all elements, e.g. $A=\{x \mid x \in \mathbb{N}$ and $1 \leq x \leq 3\}$
- implicit, as a sequence with dots,
e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
$\square e \in M: e$ is in set M (an element of the set)
- $e \notin M$: e is not in set M

Sets

■ set: unordered collection of distinguishable objects; each object contained at most once
■ notations:

- explicit, listing all elements, e.g. $A=\{1,2,3\}$
- implicit, specifying a property characterizing all elements, e.g. $A=\{x \mid x \in \mathbb{N}$ and $1 \leq x \leq 3\}$
- implicit, as a sequence with dots,
e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
$\square e \in M: e$ is in set M (an element of the set)
- $e \notin M$: e is not in set M
- empty set $\emptyset=\{ \}$

Sets

■ set: unordered collection of distinguishable objects; each object contained at most once
■ notations:

- explicit, listing all elements, e.g. $A=\{1,2,3\}$
- implicit, specifying a property characterizing all elements, e.g. $A=\{x \mid x \in \mathbb{N}$ and $1 \leq x \leq 3\}$
- implicit, as a sequence with dots,
e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
$\square e \in M: e$ is in set M (an element of the set)
- $e \notin M$: e is not in set M
- empty set $\emptyset=\{ \}$
- cardinality $|M|$ of a finite set M : number of elements in M

Sets

- $A \subseteq B: A$ is a subset of B, i. e., every element of A is an element of B
- $A \subset B: A$ is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.

Sets

- $A \subseteq B: A$ is a subset of B,
i. e., every element of A is an element of B
- $A \subset B: A$ is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.
- power set $\mathcal{P}(M)$: set of all subsets of M
e.g., $\mathcal{P}(\{a, b\})=$

Sets

- $A \subseteq B: A$ is a subset of B,
i. e., every element of A is an element of B
- $A \subset B: A$ is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.
- power set $\mathcal{P}(M)$: set of all subsets of M
e. g., $\mathcal{P}(\{a, b\})=$
- Cardinality of power set of finite set $S:|\mathcal{P}(S)|=$

Set Operations

- intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$

Set Operations

- intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$

- union $A \cup B=\{x \mid x \in A$ or $x \in B\}$ $A \bigcirc B$

Set Operations

- intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$

- union $A \cup B=\{x \mid x \in A$ or $x \in B\}$

```
A \bigcirc B
```

- difference $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

Set Operations

- intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$

- union $A \cup B=\{x \mid x \in A$ or $x \in B\}$

```
A\bigcircB
```

- difference $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

$A \bigcirc B$

- complement $\bar{A}=B \backslash A$, where $A \subseteq B$ and
B is the set of all considered objects (in a given context)

Tuples

- k-tuple: ordered sequence of k objects

■ written $\left(o_{1}, \ldots, o_{k}\right)$ or $\left\langle o_{1}, \ldots, o_{k}\right\rangle$

- unlike sets, order matters $(\langle 1,2\rangle \neq\langle 2,1\rangle)$

■ objects may occur multiple times in a tuple

Tuples

- k-tuple: ordered sequence of k objects

■ written $\left(o_{1}, \ldots, o_{k}\right)$ or $\left\langle o_{1}, \ldots, o_{k}\right\rangle$

- unlike sets, order matters $(\langle 1,2\rangle \neq\langle 2,1\rangle)$

■ objects may occur multiple times in a tuple

- objects contained in tuples are called components
- terminology:
- $k=2$: (ordered) pair
- $k=3$: triple
- if k is clear from context (or does not matter), often just called tuple

Cartesian Product

■ for sets $M_{1}, M_{2}, \ldots, M_{n}$, the Cartesian product
$M_{1} \times \cdots \times M_{n}$ is the set
$M_{1} \times \cdots \times M_{n}=\left\{\left\langle o_{1}, \ldots, o_{n}\right\rangle \mid o_{1} \in M_{1}, \ldots, o_{n} \in M_{n}\right\}$.
■ Example: $M_{1}=\{a, b, c\}, M_{2}=\{1,2\}$,
$M_{1} \times M_{2}=\{\langle a, 1\rangle,\langle a, 2\rangle,\langle b, 1\rangle,\langle b, 2\rangle,\langle c, 1\rangle,\langle c, 2\rangle\}$

Cartesian Product

■ for sets $M_{1}, M_{2}, \ldots, M_{n}$, the Cartesian product
$M_{1} \times \cdots \times M_{n}$ is the set
$M_{1} \times \cdots \times M_{n}=\left\{\left\langle o_{1}, \ldots, o_{n}\right\rangle \mid o_{1} \in M_{1}, \ldots, o_{n} \in M_{n}\right\}$.
■ Example: $M_{1}=\{a, b, c\}, M_{2}=\{1,2\}$,
$M_{1} \times M_{2}=\{\langle a, 1\rangle,\langle a, 2\rangle,\langle b, 1\rangle,\langle b, 2\rangle,\langle c, 1\rangle,\langle c, 2\rangle\}$

- special case: $M^{k}=M \times \cdots \times M$ (k times)
- example with $M=\{1,2\}$:
$M^{2}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 2,2\rangle\}$

Relations

■ an n-ary relation R over the sets M_{1}, \ldots, M_{n} is a subset of their Cartesian product: $R \subseteq M_{1} \times \cdots \times M_{n}$.

- example with $M=\{1,2\}$:
$R_{\leq} \subseteq M^{2}$ as $R_{\leq}=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,2\rangle\}$

Functions

Functions

Definition (Total Function)

A (total) function $f: D \rightarrow C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

Functions

Definition (Total Function)

A (total) function $f: D \rightarrow C$ (with sets D, C) maps every value of its domain D
to exactly one value of its codomain C.

Example

■ square $: \mathbb{Z} \rightarrow \mathbb{Z}$ with square $(x)=x^{2}$

Functions

Definition (Total Function)

A (total) function $f: D \rightarrow C$ (with sets D, C) maps every value of its domain D
to exactly one value of its codomain C.

Example

- square : $\mathbb{Z} \rightarrow \mathbb{Z}$ with square $(x)=x^{2}$

■ add : $\mathbb{N}_{0}^{2} \rightarrow \mathbb{N}_{0}$ with $\operatorname{add}(x, y)=x+y$

Functions

Definition (Total Function)

A (total) function $f: D \rightarrow C$ (with sets D, C) maps every value of its domain D
to exactly one value of its codomain C.

Example

- square $: \mathbb{Z} \rightarrow \mathbb{Z}$ with square $(x)=x^{2}$
- add : $\mathbb{N}_{0}^{2} \rightarrow \mathbb{N}_{0}$ with $\operatorname{add}(x, y)=x+y$

■ $\operatorname{add}_{\mathbb{R}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\operatorname{add}_{\mathbb{R}}(x, y)=x+y$

Functions: Example

Example

Let $Q=\left\{q_{0}, q_{1}, q_{2}, q_{\text {accept }}, q_{\text {reject }}\right\}$ and $\Gamma=\{0,1, \square\}$.
Define $\delta:\left(Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\}\right) \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ by

δ	0	1	\square
q_{0}	$\left\langle q_{0}, 0, \mathrm{R}\right\rangle$	$\left\langle q_{0}, 1, \mathrm{R}\right\rangle$	$\left\langle q_{1}, \square, \mathrm{~L}\right\rangle$
q_{1}	$\left\langle q_{2}, 1, \mathrm{~L}\right\rangle$	$\left\langle q_{1}, 0, \mathrm{~L}\right\rangle$	$\left\langle q_{\text {reject }}, 1, \mathrm{~L}\right\rangle$
q_{2}	$\left\langle q_{2}, 0, \mathrm{~L}\right\rangle$	$\left\langle q_{2}, 1, \mathrm{~L}\right\rangle$	$\left\langle q_{\text {accept }}, \square, \mathrm{R}\right\rangle$

Then, e. g., $\delta\left(q_{0}, 1\right)=\left\langle q_{0}, 1, \mathrm{R}\right\rangle$

Partial Functions

Definition (Partial Function)

A partial function $f: X \rightarrow_{\mathrm{p}} Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

Partial Functions

Definition (Partial Function)

A partial function $f: X \rightarrow_{\mathrm{p}} Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

Example

$f: \mathbb{N}_{0} \times \mathbb{N}_{0} \rightarrow_{\mathrm{p}} \mathbb{N}_{0}$ with

$$
f(x, y)= \begin{cases}x-y & \text { if } y \leq x \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Summary

Summary

- sets: unordered, contain every element at most once
- tuples: ordered, can contain the same object multiple times

■ Cartesian product: $M_{1} \times \cdots \times M_{n}$ set of all n-tuples where the i-th component is in M_{i}
■ function $f: X \rightarrow Y$ maps every value in X to exactly one value in Y

- partial function $g: X \rightarrow_{\mathrm{p}} Y$ may be undefined for some values in X

