Foundations of Artificial Intelligence G6. Board Games: Monte-Carlo Tree Search Variants

Malte Helmert

University of Basel

May 22, 2024

Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

Board Games: Overview

chapter overview:

- G1. Introduction and State of the Art
- G2. Minimax Search and Evaluation Functions
- G3. Alpha-Beta Search
- G4. Stochastic Games
- G5. Monte-Carlo Tree Search Framework
- G6. Monte-Carlo Tree Search Variants

Tree Policy: Examples

Comparison of Game Algorithms

Summary 00

Monte-Carlo Tree Search: Pseudo-Code

function visit_node(*n*)

```
if is_terminal(n.position):
     utility := utility(n.position)
else:
     s := n.get_unvisited_successor()
     if s is none:
           n' := apply\_tree\_policy(n)
           utility := visit_node(n')
     else:
           utility := simulate_game(s)
           n.add_and_initialize_child_node(s, utility)
n.N := n.N + 1
n.\hat{v} := n.\hat{v} + \frac{utility - n.\hat{v}}{n.N}
return utility
```

Tree Policy

Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

Simulation Phase

Comparison of Game Algorithms

Summary 00

Simulation Phase

idea: determine initial utility estimate by simulating game following a default policy

Definition (default policy)

Let $S = \langle S, A, T, s_{I}, S_{G}, utility, player \rangle$ be a game. A default policy for S is a mapping $\pi_{def} : S \times A \mapsto [0, 1]$ s.t.

• $\pi_{def}(s, a) > 0$ implies that move a is applicable in position s

2
$$\sum_{{\sf a}\in {\sf A}}\pi_{\sf def}(s,{\sf a})=1$$
 for all ${\sf s}\in {\sf S}$

In the call to simulate_game(s),

- the default policy is applied starting from position *s* (determining decisions for both players)
- until a terminal position s_G is reached
- and $utility(s_G)$ is returned.

Simulation Phase	Tree Policy 00000	Tree Policy: Examples	Comparison of Game Algorithms	Summary 00

"standard" implementation: Monte-Carlo random walk

- in each position, select a move uniformly at random
- until a terminal position is reached
- policy very cheap to compute
- uninformed ~> often not sufficient for good results
- not always cheap to simulate

alternative: game-specific default policy

hand-crafted or

Implementations

learned offline

Comparison of Game Algorithm

Summary 00

Default Policy vs. Evaluation Function

- default policy simulates a game to obtain utility estimate
 \$\sim default policy must be evaluated in many positions
- if default policy is expensive to compute or poorly informed, simulations are expensive
- observe: simulating a game to the end is just a specific implementation of an evaluation function
- many modern implementations replace default policy with evaluation function that directly computes a utility estimate
- → MCTS becomes a heuristic search algorithm

Tree Policy

Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

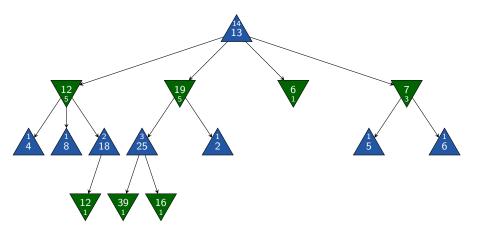
Tree Policy

Tree Policy

Tree Policy: Examples

Comparison of Game Algorithm

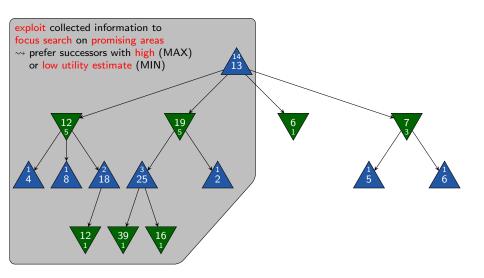
Summary 00



Tree Policy 0●000 Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

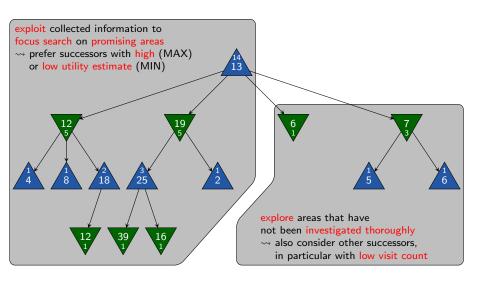


Tree Policy

Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

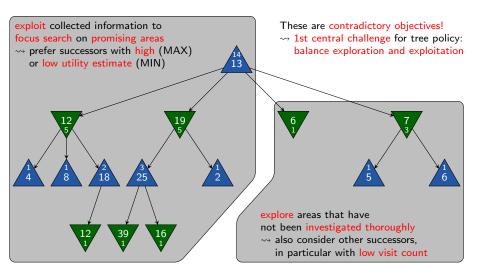


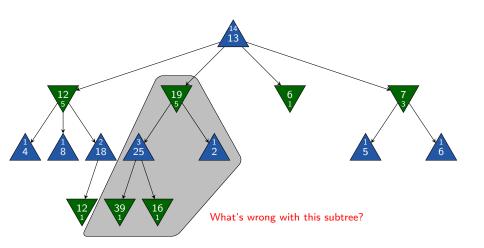
Tree Policy

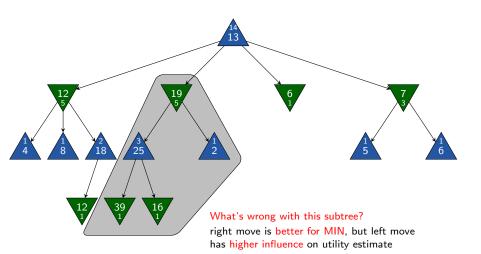
Tree Policy: Examples

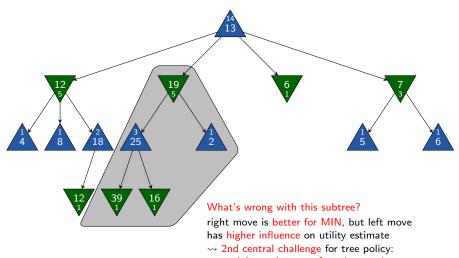
Comparison of Game Algorithm

Summary









exploit much more often than explore (in the limit)

Comparison of Game Algorithms

Summary 00

Asymptotic Optimality

Definition (asymptotic optimality)

Let S be a game with set of positions S. Let $v^*(s)$ denote the (true) utility of position $s \in S$.

Let $n \cdot \hat{v}^k$ denote the utility estimate of a search node *n* after *k* trials.

An MCTS algorithm is asymptotically optimal if

$$\lim_{k\to\infty} n.\hat{v}^k = v^*(n.\text{position})$$

for all search nodes n.

Comparison of Game Algorithms

Asymptotic Optimality

a tree policy is asymptotically optimal if

- it explores forever:
 - every position is eventually added to the game tree and visited infinitely often

(requires that the game tree is finite)

- after a finite number of trials, all trials end in a terminal position and the default policy is no longer used
- and it is greedy in the limit:
 - ${\ensuremath{\, \bullet }}$ the probability that an optimal move is selected converges to 1
 - in the limit, backups based on trials where only an optimal policy is followed dominate suboptimal backups

Comparison of Game Algorithm

Summary 00

Tree Policy: Examples

Tree Policy: Examples

Comparison of Game Algorithm

Summary

ε -greedy: Idea and Example

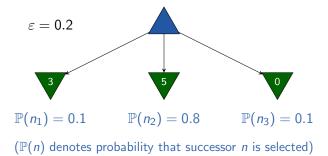
- \bullet tree policy with constant parameter ε
- \bullet with probability $1-\varepsilon,$ pick a greedy move which leads to:
 - a successor with highest utility estimate (for MAX)
 - a successor with lowest utility estimate (for MIN)

• otherwise, pick a non-greedy successor uniformly at random

Comparison of Game Algorithm

ε -greedy: Idea and Example

- tree policy with constant parameter ε
- with probability 1ε , pick a greedy move which leads to:
 - a successor with highest utility estimate (for MAX)
 - a successor with lowest utility estimate (for MIN)
- otherwise, pick a non-greedy successor uniformly at random

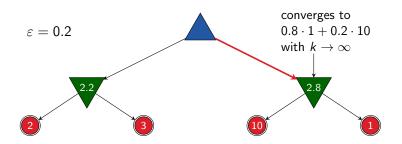


Simulation Phase Tree Policy Tree Policy: Examples Comparison of Game Algorithm

Summary 00

ε -greedy: Optimality

ε -greedy is not asymptotically optimal:



variants that are asymptotically optimal exist (e.g., decaying ε , minimax backups)

Tree Polic

Tree Policy: Examples

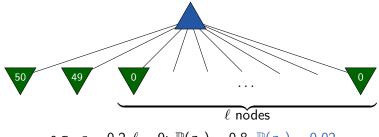
Comparison of Game Algorithm

Summary

ε -greedy: Weakness

problem:

when ε -greedy explores, all non-greedy moves are treated equally



e.g., $\varepsilon = 0.2, \ell = 9$: $\mathbb{P}(n_1) = 0.8$, $\mathbb{P}(n_2) = 0.02$

Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

Softmax: Idea and Example

- ${\, \bullet \,}$ tree policy with constant parameter $\tau > 0$
- select moves with a frequency that directly relates to their utility estimate
- Boltzmann exploration selects moves proportionally to $\mathbb{P}(n) \propto e^{\frac{n.\hat{\nu}}{\tau}}$ for MAX and to $\mathbb{P}(n) \propto e^{\frac{-n.\hat{\nu}}{\tau}}$ for MIN

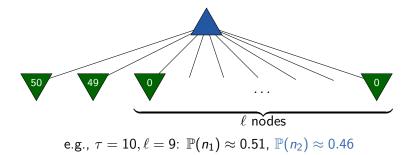
Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

Softmax: Idea and Example

- ${\, \bullet \,}$ tree policy with constant parameter $\tau > 0$
- select moves with a frequency that directly relates to their utility estimate
- Boltzmann exploration selects moves proportionally to $\mathbb{P}(n) \propto e^{\frac{n.\hat{v}}{\tau}}$ for MAX and to $\mathbb{P}(n) \propto e^{\frac{-n.\hat{v}}{\tau}}$ for MIN



Tree Policy

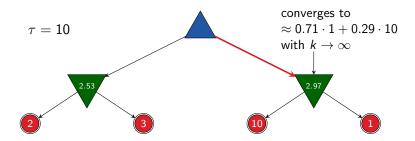
Tree Policy: Examples

Comparison of Game Algorithm

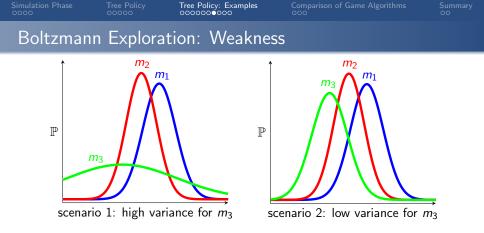
Summary

Boltzmann exploration: Optimality

Boltzmann exploration is not asymptotically optimal:



variants that are asymptotically optimal exist (e.g., decaying τ , minimax backups)



- Boltzmann exploration only considers mean of sampled utilities for the given moves
- as we sample the same node many times, we can also gather information about variance (how reliable the information is)
- Boltzmann exploration ignores the variance, treating the two scenarios equally

Tree Policy: Examples

Comparison of Game Algorithm

Summary 00

Upper Confidence Bounds: Idea

balance exploration and exploitation by preferring moves that

- have been successful in earlier iterations (exploit)
- have been selected rarely (explore)

Comparison of Game Algorithm

Summary 00

Upper Confidence Bounds: Idea

upper confidence bound for MAX:

- select successor n' of n that maximizes $n' \cdot \hat{v} + B(n')$
- based on utility estimate $n'.\hat{v}$
- and a bonus term B(n')
- select B(n') such that $v^*(n'.position) \le n'.\hat{v} + B(n')$ with high probability
- idea: $n'.\hat{v} + B(n')$ is an upper confidence bound on $n'.\hat{v}$ under the collected information

(for MIN: maximize $-n'.\hat{v} + B(n')$)

Tree Policy: Examples

Comparison of Game Algorithms

Summary 00

Upper Confidence Bounds: UCB1

• use
$$B(n') = \sqrt{\frac{2 \cdot \ln n \cdot N}{n' \cdot N}}$$
 as bonus term

- bonus term is derived from Chernoff-Hoeffding bound, which
 - gives the probability that a sampled value (here: $n'.\hat{v}$)
 - is far from its true expected value (here: $v^*(n'.position)$)
 - in dependence of the number of samples (here: n'.N)
- picks an optimal move exponentially more often in the limit

UCB1 is asymptotically optimal.

Tree Polic

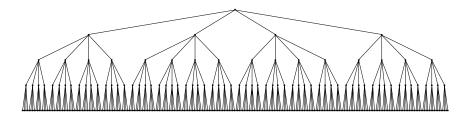
Tree Policy: Examples

Summary 00

Comparison of Game Algorithms

Simulation Phase	Tree Policy 00000	Tree Policy: Examples	Comparison of Game Algorithms ○●○	Summary 00
Minimax	Tree			

full tree up to depth 4



alpha-beta search with same effort: \rightsquigarrow depth 6–8 with good move ordering

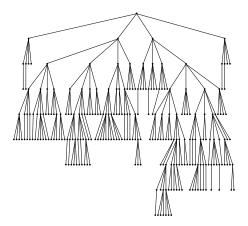
Tree Polic

Tree Policy: Examples

Comparison of Game Algorithms

Summary 00

MCTS Tree



Tree Policy

Tree Policy: Examples

Comparison of Game Algorithm

Summary •0

Summary

Comparison of Game Algorithms

Summary

Summary

• tree policy is crucial for MCTS

- ϵ -greedy favors greedy moves and treats all others equally
- Boltzmann exploration selects moves proportionally to an exponential function of their utility estimates
- UCB1 favors moves that were successful in the past or have been explored rarely
- for each, there are applications where they perform best
- good default policies are domain-dependent and hand-crafted or learned offline
- using evaluation functions instead of a default policy often pays off