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Board Games: Overview

chapter overview:

▶ G1. Introduction and State of the Art

▶ G2. Minimax Search and Evaluation Functions

▶ G3. Alpha-Beta Search

▶ G4. Stochastic Games

▶ G5. Monte-Carlo Tree Search Framework

▶ G6. Monte-Carlo Tree Search Variants
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Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := utility(n.position)

else:
s := n.get unvisited successor()
if s is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
utility := simulate game(s)
n.add and initialize child node(s, utility)

n.N := n.N + 1
n.v̂ := n.v̂ + utility−n.v̂

n.N
return utility
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G6.1 Simulation Phase
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Simulation Phase

idea: determine initial utility estimate by
simulating game following a default policy

Definition (default policy)

Let S = ⟨S ,A,T , sI,SG, utility, player⟩ be a game.
A default policy for S is a mapping πdef : S × A 7→ [0, 1] s.t.

1 πdef(s, a) > 0 implies that move a is applicable in position s

2
∑

a∈A πdef(s, a) = 1 for all s ∈ S

In the call to simulate game(s),

▶ the default policy is applied starting from position s
(determining decisions for both players)

▶ until a terminal position sG is reached

▶ and utility(sG) is returned.
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Implementations

“standard” implementation: Monte-Carlo random walk

▶ in each position, select a move uniformly at random

▶ until a terminal position is reached

▶ policy very cheap to compute

▶ uninformed ⇝ often not sufficient for good results

▶ not always cheap to simulate

alternative: game-specific default policy

▶ hand-crafted or

▶ learned offline

Gelly and Silver, Combining Online and Offline Knowledge in UCT (ICML, 2007)
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Default Policy vs. Evaluation Function

▶ default policy simulates a game to obtain utility estimate
⇝ default policy must be evaluated in many positions

▶ if default policy is expensive to compute or poorly informed,
simulations are expensive

▶ observe: simulating a game to the end is just a
specific implementation of an evaluation function

▶ many modern implementations replace default policy with
evaluation function that directly computes a utility estimate

⇝ MCTS becomes a heuristic search algorithm
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G6.2 Tree Policy
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Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
⇝ prefer successors with high (MAX)

or low utility estimate (MIN)

explore areas that have
not been investigated thoroughly
⇝ also consider other successors,

in particular with low visit count

These are contradictory objectives!
⇝ 1st central challenge for tree policy:

balance exploration and exploitation
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Objective of Tree Policy (2)

What’s wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate

⇝ 2nd central challenge for tree policy:
exploit much more often than explore
(in the limit)
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Asymptotic Optimality

Definition (asymptotic optimality)

Let S be a game with set of positions S .
Let v∗(s) denote the (true) utility of position s ∈ S .

Let n.v̂k denote the utility estimate
of a search node n after k trials.

An MCTS algorithm is asymptotically optimal if

lim
k→∞

n.v̂k = v∗(n.position)

for all search nodes n.
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Asymptotic Optimality

a tree policy is asymptotically optimal if
▶ it explores forever:

▶ every position is eventually added to the game tree
and visited infinitely often
(requires that the game tree is finite)

⇝ after a finite number of trials, all trials end in a terminal
position and the default policy is no longer used

▶ and it is greedy in the limit:
▶ the probability that an optimal move is selected converges to 1
⇝ in the limit, backups based on trials where only

an optimal policy is followed dominate suboptimal backups
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ε-greedy: Idea and Example

▶ tree policy with constant parameter ε
▶ with probability 1− ε, pick a greedy move which leads to:

▶ a successor with highest utility estimate (for MAX)
▶ a successor with lowest utility estimate (for MIN)

▶ otherwise, pick a non-greedy successor uniformly at random

ε = 0.2

3 5 0

(P(n) denotes probability that successor n is selected)

P(n1) = 0.1 P(n2) = 0.8 P(n3) = 0.1
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ε-greedy: Optimality

ε-greedy is not asymptotically optimal:

ε = 0.2

2.2 2.8

2 3 10 1

converges to
0.8 · 1 + 0.2 · 10
with k → ∞

variants that are asymptotically optimal exist
(e.g., decaying ε, minimax backups)
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ε-greedy: Weakness

problem:
when ε-greedy explores, all non-greedy moves are treated equally

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., ε = 0.2, ℓ = 9: P(n1) = 0.8, P(n2) = 0.02
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Softmax: Idea and Example

▶ tree policy with constant parameter τ > 0

▶ select moves with a frequency that directly relates
to their utility estimate

▶ Boltzmann exploration selects moves proportionally to

P(n) ∝ e
n.v̂
τ for MAX and to P(n) ∝ e

−n.v̂
τ for MIN

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., τ = 10, ℓ = 9: P(n1) ≈ 0.51, P(n2) ≈ 0.46
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Boltzmann exploration: Optimality

Boltzmann exploration is not asymptotically optimal:

τ = 10

2.53 2.97

2 3 10 1

converges to
≈ 0.71 · 1 + 0.29 · 10
with k → ∞

variants that are asymptotically optimal exist
(e.g., decaying τ , minimax backups)
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Boltzmann Exploration: Weakness

m1

m2

m3

scenario 1: high variance for m3

P

m1

m2

m3

scenario 2: low variance for m3

P

▶ Boltzmann exploration only considers mean
of sampled utilities for the given moves

▶ as we sample the same node many times, we can also gather
information about variance (how reliable the information is)

▶ Boltzmann exploration ignores the variance,
treating the two scenarios equally
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Upper Confidence Bounds: Idea

balance exploration and exploitation by preferring moves that

▶ have been successful in earlier iterations (exploit)

▶ have been selected rarely (explore)
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Upper Confidence Bounds: Idea

upper confidence bound for MAX:

▶ select successor n′ of n that maximizes n′.v̂ + B(n′)

▶ based on utility estimate n′.v̂

▶ and a bonus term B(n′)

▶ select B(n′) such that v∗(n′.position) ≤ n′.v̂ + B(n′)
with high probability

▶ idea: n′.v̂ + B(n′) is an upper confidence bound
on n′.v̂ under the collected information

(for MIN: maximize −n′.v̂ + B(n′))
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Upper Confidence Bounds: UCB1

▶ use B(n′) =
√

2·ln n.N
n′.N as bonus term

▶ bonus term is derived from Chernoff-Hoeffding bound, which
▶ gives the probability that a sampled value (here: n′.v̂)
▶ is far from its true expected value (here: v∗(n′.position))
▶ in dependence of the number of samples (here: n′.N)

▶ picks an optimal move exponentially more often in the limit

UCB1 is asymptotically optimal.
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G6.4 Comparison of Game
Algorithms
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Minimax Tree

full tree up to depth 4

alpha-beta search with same effort:
⇝ depth 6–8 with good move ordering
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MCTS Tree
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G6.5 Summary
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Summary

▶ tree policy is crucial for MCTS
▶ ϵ-greedy favors greedy moves and treats all others equally
▶ Boltzmann exploration selects moves proportionally to

an exponential function of their utility estimates
▶ UCB1 favors moves that were successful in the past

or have been explored rarely

▶ for each, there are applications where they perform best

▶ good default policies are domain-dependent and hand-crafted
or learned offline

▶ using evaluation functions instead of a default policy
often pays off
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