
Foundations of Artificial Intelligence
G6. Board Games: Monte-Carlo Tree Search Variants

Malte Helmert

University of Basel

May 22, 2024

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 1 / 28



Foundations of Artificial Intelligence
May 22, 2024 — G6. Board Games: Monte-Carlo Tree Search Variants

G6.1 Simulation Phase

G6.2 Tree Policy

G6.3 Tree Policy: Examples

G6.4 Comparison of Game Algorithms

G6.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 2 / 28



Board Games: Overview

chapter overview:

▶ G1. Introduction and State of the Art

▶ G2. Minimax Search and Evaluation Functions

▶ G3. Alpha-Beta Search

▶ G4. Stochastic Games

▶ G5. Monte-Carlo Tree Search Framework

▶ G6. Monte-Carlo Tree Search Variants

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 3 / 28



Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := utility(n.position)

else:
s := n.get unvisited successor()
if s is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
utility := simulate game(s)
n.add and initialize child node(s, utility)

n.N := n.N + 1
n.v̂ := n.v̂ + utility−n.v̂

n.N
return utility

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 4 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Simulation Phase

G6.1 Simulation Phase

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 5 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Simulation Phase

Simulation Phase

idea: determine initial utility estimate by
simulating game following a default policy

Definition (default policy)

Let S = ⟨S ,A,T , sI,SG, utility, player⟩ be a game.
A default policy for S is a mapping πdef : S × A 7→ [0, 1] s.t.

1 πdef(s, a) > 0 implies that move a is applicable in position s

2
∑

a∈A πdef(s, a) = 1 for all s ∈ S

In the call to simulate game(s),

▶ the default policy is applied starting from position s
(determining decisions for both players)

▶ until a terminal position sG is reached

▶ and utility(sG) is returned.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 6 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Simulation Phase

Implementations

“standard” implementation: Monte-Carlo random walk

▶ in each position, select a move uniformly at random

▶ until a terminal position is reached

▶ policy very cheap to compute

▶ uninformed ⇝ often not sufficient for good results

▶ not always cheap to simulate

alternative: game-specific default policy

▶ hand-crafted or

▶ learned offline

Gelly and Silver, Combining Online and Offline Knowledge in UCT (ICML, 2007)

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 7 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Simulation Phase

Default Policy vs. Evaluation Function

▶ default policy simulates a game to obtain utility estimate
⇝ default policy must be evaluated in many positions

▶ if default policy is expensive to compute or poorly informed,
simulations are expensive

▶ observe: simulating a game to the end is just a
specific implementation of an evaluation function

▶ many modern implementations replace default policy with
evaluation function that directly computes a utility estimate

⇝ MCTS becomes a heuristic search algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 8 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy

G6.2 Tree Policy

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 9 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy

Objective of Tree Policy (1)

exploit collected information to
focus search on promising areas
⇝ prefer successors with high (MAX)

or low utility estimate (MIN)

explore areas that have
not been investigated thoroughly
⇝ also consider other successors,

in particular with low visit count

These are contradictory objectives!
⇝ 1st central challenge for tree policy:

balance exploration and exploitation
13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 10 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy

Objective of Tree Policy (2)

What’s wrong with this subtree?

right move is better for MIN, but left move
has higher influence on utility estimate

⇝ 2nd central challenge for tree policy:
exploit much more often than explore
(in the limit)

13
14

12
5

19
5

6
1

7
3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12
1

39
1

16
1

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 11 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy

Asymptotic Optimality

Definition (asymptotic optimality)

Let S be a game with set of positions S .
Let v∗(s) denote the (true) utility of position s ∈ S .

Let n.v̂k denote the utility estimate
of a search node n after k trials.

An MCTS algorithm is asymptotically optimal if

lim
k→∞

n.v̂k = v∗(n.position)

for all search nodes n.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 12 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy

Asymptotic Optimality

a tree policy is asymptotically optimal if
▶ it explores forever:

▶ every position is eventually added to the game tree
and visited infinitely often
(requires that the game tree is finite)

⇝ after a finite number of trials, all trials end in a terminal
position and the default policy is no longer used

▶ and it is greedy in the limit:
▶ the probability that an optimal move is selected converges to 1
⇝ in the limit, backups based on trials where only

an optimal policy is followed dominate suboptimal backups

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 13 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

G6.3 Tree Policy: Examples

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 14 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

ε-greedy: Idea and Example

▶ tree policy with constant parameter ε
▶ with probability 1− ε, pick a greedy move which leads to:

▶ a successor with highest utility estimate (for MAX)
▶ a successor with lowest utility estimate (for MIN)

▶ otherwise, pick a non-greedy successor uniformly at random

ε = 0.2

3 5 0

(P(n) denotes probability that successor n is selected)

P(n1) = 0.1 P(n2) = 0.8 P(n3) = 0.1

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 15 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

ε-greedy: Optimality

ε-greedy is not asymptotically optimal:

ε = 0.2

2.2 2.8

2 3 10 1

converges to
0.8 · 1 + 0.2 · 10
with k → ∞

variants that are asymptotically optimal exist
(e.g., decaying ε, minimax backups)

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 16 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

ε-greedy: Weakness

problem:
when ε-greedy explores, all non-greedy moves are treated equally

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., ε = 0.2, ℓ = 9: P(n1) = 0.8, P(n2) = 0.02

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 17 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

Softmax: Idea and Example

▶ tree policy with constant parameter τ > 0

▶ select moves with a frequency that directly relates
to their utility estimate

▶ Boltzmann exploration selects moves proportionally to

P(n) ∝ e
n.v̂
τ for MAX and to P(n) ∝ e

−n.v̂
τ for MIN

50 49 0 . . . 0

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
ℓ nodes

e.g., τ = 10, ℓ = 9: P(n1) ≈ 0.51, P(n2) ≈ 0.46

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 18 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

Boltzmann exploration: Optimality

Boltzmann exploration is not asymptotically optimal:

τ = 10

2.53 2.97

2 3 10 1

converges to
≈ 0.71 · 1 + 0.29 · 10
with k → ∞

variants that are asymptotically optimal exist
(e.g., decaying τ , minimax backups)

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 19 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

Boltzmann Exploration: Weakness

m1

m2

m3

scenario 1: high variance for m3

P

m1

m2

m3

scenario 2: low variance for m3

P

▶ Boltzmann exploration only considers mean
of sampled utilities for the given moves

▶ as we sample the same node many times, we can also gather
information about variance (how reliable the information is)

▶ Boltzmann exploration ignores the variance,
treating the two scenarios equally

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 20 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

Upper Confidence Bounds: Idea

balance exploration and exploitation by preferring moves that

▶ have been successful in earlier iterations (exploit)

▶ have been selected rarely (explore)

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 21 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

Upper Confidence Bounds: Idea

upper confidence bound for MAX:

▶ select successor n′ of n that maximizes n′.v̂ + B(n′)

▶ based on utility estimate n′.v̂

▶ and a bonus term B(n′)

▶ select B(n′) such that v∗(n′.position) ≤ n′.v̂ + B(n′)
with high probability

▶ idea: n′.v̂ + B(n′) is an upper confidence bound
on n′.v̂ under the collected information

(for MIN: maximize −n′.v̂ + B(n′))

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 22 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Tree Policy: Examples

Upper Confidence Bounds: UCB1

▶ use B(n′) =
√

2·ln n.N
n′.N as bonus term

▶ bonus term is derived from Chernoff-Hoeffding bound, which
▶ gives the probability that a sampled value (here: n′.v̂)
▶ is far from its true expected value (here: v∗(n′.position))
▶ in dependence of the number of samples (here: n′.N)

▶ picks an optimal move exponentially more often in the limit

UCB1 is asymptotically optimal.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 23 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Comparison of Game Algorithms

G6.4 Comparison of Game
Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 24 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Comparison of Game Algorithms

Minimax Tree

full tree up to depth 4

alpha-beta search with same effort:
⇝ depth 6–8 with good move ordering

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 25 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Comparison of Game Algorithms

MCTS Tree

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 26 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Summary

G6.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 27 / 28



G6. Board Games: Monte-Carlo Tree Search Variants Summary

Summary

▶ tree policy is crucial for MCTS
▶ ϵ-greedy favors greedy moves and treats all others equally
▶ Boltzmann exploration selects moves proportionally to

an exponential function of their utility estimates
▶ UCB1 favors moves that were successful in the past

or have been explored rarely

▶ for each, there are applications where they perform best

▶ good default policies are domain-dependent and hand-crafted
or learned offline

▶ using evaluation functions instead of a default policy
often pays off

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 28 / 28


	Simulation Phase
	

	Tree Policy
	

	Tree Policy: Examples
	

	Comparison of Game Algorithms
	

	Summary
	


