
Foundations of Artificial Intelligence
G5. Board Games: Monte-Carlo Tree Search Framework

Malte Helmert

University of Basel

May 22, 2024

Introduction Monte-Carlo Tree Search Summary

Board Games: Overview

chapter overview:

G1. Introduction and State of the Art

G2. Minimax Search and Evaluation Functions

G3. Alpha-Beta Search

G4. Stochastic Games

G5. Monte-Carlo Tree Search Framework

G6. Monte-Carlo Tree Search Variants

Introduction Monte-Carlo Tree Search Summary

Introduction

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

systematic exploration of search space

computation of (state) quality
follows performance metric

algorithms considered today:

search based on Monte-Carlo methods:

sampling of game simulations

estimation of (state) quality by
averaging over simulation results

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

systematic exploration of search space

computation of (state) quality
follows performance metric

algorithms considered today:

search based on Monte-Carlo methods:

sampling of game simulations

estimation of (state) quality by
averaging over simulation results

Introduction Monte-Carlo Tree Search Summary

Game Applications

board games hidden information games stochastic games

general game playing real-time strategy games dynamic difficulty adjustment

Świechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)

http://ggp.stanford.edu/

Introduction Monte-Carlo Tree Search Summary

Applications Beyond Games

story generation chemical synthesis UAV routing

coast security forest harvesting Earth observation

Świechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)

Introduction Monte-Carlo Tree Search Summary

MCTS Environments

MCTS environments cover entire spectrum of properties.

We study MCTS under the same restrictions as before, i.e.,

environment classification,

problem solving method,

objective of the agent and

performance measure

are identical to Chapters G1–G3.

MCTS extensions exist that allow us to drop most restrictions.

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Introduction Monte-Carlo Tree Search Summary

Data Structures

Monte-Carlo tree search

is a tree search variant
⇝ no closed list

iteratively performs game simulations from the initial position
(called trial or rollout)
⇝ no (explicit) open list

⇝ MCTS nodes are the only used data structure

Introduction Monte-Carlo Tree Search Summary

Data Structure: MCTS Nodes

11
8

12
2

14
4

6
1

7
1

18
1

18
2

2
1

16
1

a1 a2 a3
a4

a5 a6 a7

a8

MCTS nodes store

a reached position

how it was reached

its successors

a utility estimate (v̂)

a visit counter (N)

possibly additional information

18
2

position: not displayed

move: a6

successors: [none,]

v̂ : 18

N: 2

. . . : . . .

16
1

Introduction Monte-Carlo Tree Search Summary

Data Structure: MCTS Nodes

11
8

12
2

14
4

6
1

7
1

18
1

18
2

2
1

16
1

a1 a2 a3
a4

a5 a6 a7

a8

MCTS nodes store

a reached position

how it was reached

its successors

a utility estimate (v̂)

a visit counter (N)

possibly additional information

18
2

position: not displayed

move: a6

successors: [none,]

v̂ : 18

N: 2

. . . : . . .

16
1

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

build a partial game tree

by performing trials as long as resources
(deliberation time, memory) allow

initially, the tree contains only the root node

each trial adds (at most) one node to the tree

after termination, play the associated move of a successor
of the root node with highest utility estimate

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4

19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0

39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0

39
1
39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0

39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4
19
5
19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4

14
4

19
5

19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4
14
4
19
5

19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Idea and Example

each iteration consists of four phases: selection, expansion, simulation
and backpropagation

selection:
traverse the tree by applying tree policy

until a node with associated terminal position

or a node with missing successor is reached

expansion:
for one of the missing successors,
add a node to the game tree

simulation:
apply default policy from the added successor
until a terminal position is reached;
(no nodes are added to the tree)

backpropagation:
update visited nodes n in reverse order:

increase the visit counter n.N by 1

update utility estimate n.v̂ with
utility from reached terminal position

perform next iteration if resources allow and
play move with highest utility estimate otherwise

11
13

11
13

13
14

12
5

14
4
14
4
19
5

19
5

6
1

7
3

4
1

8
1

18
2

18
2

18
2

25
3

25
3

2
1

5
1

6
1

12
1

?
0
39
1

39
1

16
1

39

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

n0 := create root node()
while time allows():

visit node(n0)
nbest := argmaxn∈succ(n0) n.v̂
return nbest.move

Introduction Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := utility(n.position)

else:
s := n.get unvisited successor()
if s is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
utility := simulate game(s)
n.add and initialize child node(s, utility)

n.N := n.N + 1
n.v̂ := n.v̂ + utility−n.v̂

n.N
return utility

Introduction Monte-Carlo Tree Search Summary

Summary

Introduction Monte-Carlo Tree Search Summary

Summary

Monte-Carlo methods compute averages
over a number of random samples.

Monte-Carlo Tree Search (MCTS) algorithms
simulate a playout of the game

and iteratively build a search tree,
adding (at most) one node in each iteration.

MCTS is parameterized by a tree policy and a default policy.

	Introduction
	

	Monte-Carlo Tree Search
	

	Summary
	

