Foundations of Artificial Intelligence

Gb. Board Games: Monte-Carlo Tree Search Framework

Malte Helmert

University of Basel

May 22, 2024

Board Games: Overview

chapter overview:

GL.
G2.
G3.
G4.
G5.
G6.

Introduction and State of the Art
Minimax Search and Evaluation Functions
Alpha-Beta Search

Stochastic Games

Monte-Carlo Tree Search Framework

Monte-Carlo Tree Search Variants

Introduction

Introduction

[e] le]e]e}

Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

@ systematic exploration of search space

@ computation of (state) quality
follows performance metric

Introduction

[e] le]e]e}

Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

@ systematic exploration of search space

@ computation of (state) quality
follows performance metric

algorithms considered today:

;w search based on Monte-Carlo methods:
] -
s, W @ sampling of game simulations

@ estimation of (state) quality by
averaging over simulation results

Introduction
[e]e] Yolo)

Game Applications

board games hidden information games stochastic games

general game playing real-time strategy games dynamic difficulty adjustment

Swiechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)

http://ggp.stanford.edu/

Introduction
[e]e]e] o]

Applications Beyond Games

story generation chemical synthesis UAV routing

' Us o o~
0457 Sz
. 4

coast security forest harvesting Earth observation

Swiechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)

Introduction
0000e

MCTS Environments

MCTS environments cover entire spectrum of properties.

We study MCTS under the same restrictions as before, i.e.,
@ environment classification,
@ problem solving method,
@ objective of the agent and
@ performance measure
are identical to Chapters G1-G3.

MCTS extensions exist that allow us to drop most restrictions.

Monte-Carlo Tree Search

®000000

Monte-Carlo Tree Search

Monte-Carlo Tree Search
(o] lelele]e]e]

Data Structures

Monte-Carlo tree search

@ is a tree search variant
~> no closed list

@ iteratively performs game simulations from the initial position
(called trial or rollout)
~ no (explicit) open list

~» MCTS nodes are the only used data structure

Monte-Carlo Tree Search

[e]e] lele]ele)

Data Structure: MCTS Nodes

MCTS nodes store
@ a reached position
@ how it was reached

@ its successors

a utility estimate ()

@ a visit counter (N)

possibly additional information

Monte-Carlo Tree Search

[e]e] lele]ele)

Data Structure: MCTS Nodes

MCTS nodes store
@ a reached position
@ how it was reached

@ its successors

a utility estimate ()

a visit counter (N)

possibly additional information

! position:

not displayed

e move:

SUCCESSOrs:

S>

96
[none, ?]
18

2

Monte-Carlo Tree Search
[e]e]e] lelele]

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:
@ build a partial game tree

@ by performing trials as long as resources
(deliberation time, memory) allow

initially, the tree contains only the root node

each trial adds (at most) one node to the tree

after termination, play the associated move of a successor
of the root node with highest utility estimate

Monte-Carlo Tree Search
[ee]ele] Tele]

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

selection:
traverse the tree by applying tree policy

Monte-Carlo Tree Search
[ee]ele] Tele]

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

selection:
traverse the tree by applying tree policy

Monte-Carlo Tree Search
[ee]ele] Tele]

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

selection:
traverse the tree by applying tree policy

@ until a node with associated terminal position

@ or a node with missing successor is reached

Monte-Carlo Tree Search
[ee]ele] Tele]

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

expansion:

for one of the missing successors,
add a node to the game tree

Monte-Carlo Tree Search

[e]e]e]e] lele)

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

simulation:
apply default policy from the added successor
until a terminal position is reached;

(no nodes are added to the tree)

Monte-Carlo Tree Search

[e]e]e]e] lele)

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position

Monte-Carlo Tree Search

[e]e]e]e] lele)

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position

Monte-Carlo Tree Search

[e]e]e]e] lele)

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position

Monte-Carlo Tree Search

[e]e]e]e] lele)

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

backpropagation:
update visited nodes n in reverse order:

@ increase the visit counter n.N by 1

@ update utility estimate n.V with
utility from reached terminal position

Monte-Carlo Tree Search

[e]e]e]e] lele)

Idea and Example

each iteration consists of four phases: selection, expansion, simulation

and backpropagation

perform next iteration if resources allow and
play move with highest utility estimate otherwise

Monte-Carlo Tree Search
0O0000e0

Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

no := create_root_node()
while time_allows():
visit_node(ng)

Npest = Arg MaXpesuce(ng) M-V
return npest.move

Monte-Carlo Tree Search
000000@

Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)

if is_terminal(n.position):
utility := utility(n.position)
else:
s := n.get_unvisited_successor()
if s is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
utility :== simulate_game(s)
n.add_and_initialize_child_node(s, utility)
nN:=nN+1 X
n.V:=nv+ ﬂ”;%
return utility

Summary

Summary
oce

Summary

@ Monte-Carlo methods compute averages
over a number of random samples.

e Monte-Carlo Tree Search (MCTS) algorithms
simulate a playout of the game

@ and iteratively build a search tree,
adding (at most) one node in each iteration.

@ MCTS is parameterized by a tree policy and a default policy.

	Introduction
	

	Monte-Carlo Tree Search
	

	Summary
	

