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Monte-Carlo Tree Search

algorithms considered previously:

systematic search:

> systematic exploration of search space

> computation of (state) quality
follows performance metric

algorithms considered today:

EE== search based on Monte-Carlo methods:
e > §

» sampling of game simulations

> estimation of (state) quality by
averaging over simulation results
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Game Applications

hidden information games stochastic games

general game playing real-time strategy games dynamic difficulty adjustment

Swiechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)
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Applications Beyond Games

story generation chemical synthesis UAV routing

Introduction

coast security forest harvesting Earth observation

Swiechowski et al., Monte Carlo Tree Search: a review of recent modifications and applications (2023)
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MCTS Environments

MCTS environments cover entire spectrum of properties.

We study MCTS under the same restrictions as before, i.e.,
» environment classification,
» problem solving method,
> objective of the agent and
» performance measure
are identical to Chapters G1-G3.

MCTS extensions exist that allow us to drop most restrictions.
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Gb5.2 Monte-Carlo Tree Search
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Data Structures

Monte-Carlo tree search

P is a tree search variant
~~ no closed list

> iteratively performs game simulations from the initial position
(called trial or rollout)
~ no (explicit) open list

~> MCTS nodes are the only used data structure
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Data Structure: MCTS Nodes

MCTS nodes store

a reached position
how it was reached
its successors

a utility estimate (¥)
a visit counter (N)

possibly additional information

,'I position: | not displayed
4‘;,{..~"" move: | ag
successors: | [ none,V]—
v:| 18
2
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Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:
P build a partial game tree

» by performing trials as long as resources
(deliberation time, memory) allow

> initially, the tree contains only the root node

» each trial adds (at most) one node to the tree

after termination, play the associated move of a successor
of the root node with highest utility estimate
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Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

selection:
traverse the tree by applying tree policy
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Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

selection:
traverse the tree by applying tree policy

» until a node with associated terminal position

» or a node with missing successor is reached
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Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

expansion:
for one of the missing successors,
add a node to the game tree
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Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

simulation:
apply default policy from the added successor
until a terminal position is reached;

(no nodes are added to the tree)
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Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

backpropagation:
update visited nodes n in reverse order:

» increase the visit counter n.N by 1

» update utility estimate n.V with
utility from reached terminal position

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 18 / 26



G5. Board Games: Monte-Carlo Tree Search Framework Monte-Carlo Tree Search

Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

backpropagation:
update visited nodes n in reverse order:

» increase the visit counter n.N by 1

» update utility estimate n.V with
utility from reached terminal position

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 19 / 26



G5. Board Games: Monte-Carlo Tree Search Framework Monte-Carlo Tree Search

Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

backpropagation:
update visited nodes n in reverse order:

» increase the visit counter n.N by 1

» update utility estimate n.V with
utility from reached terminal position

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2024 20 / 26



G5. Board Games: Monte-Carlo Tree Search Framework Monte-Carlo Tree Search
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Idea and Example

selection, expansion, simulation
and backpropagation

each iteration consists of four phases:

perform next iteration if resources allow and
play move with highest utility estimate otherwise
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Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

no := create_root_node()

while time_allows():
visit_node(ng)

Nbest := aArg MaXncsucc(ng) M-V
return npege.move
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Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)
if is_terminal(n.position):
utility := utility(n.position)
else:
s := n.get_unvisited_successor()
if s is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
utility := simulate_game(s)
n.add_and_initialize_child_node(s, utility)
nN:=nN+1
n.v:=nv+ %
return utility

M. Helmert (University of Basel) Foundations of Artificial Intelligence

Monte-Carlo Tree Search

May 22, 2024

24 /

26



G5. Board Games: Monte-Carlo Tree Search Framework Summary

Gb5.3 Summary
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Summary

» Monte-Carlo methods compute averages
over a number of random samples.

» Monte-Carlo Tree Search (MCTS) algorithms
simulate a playout of the game

P and iteratively build a search tree,
adding (at most) one node in each iteration.

» MCTS is parameterized by a tree policy and a default policy.
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