Foundations of Artificial Intelligence G4. Board Games: Stochastic Games

Malte Helmert

University of Basel

May 15, 2024

Foundations of Artificial Intelligence May 15, 2024 — G4. Board Games: Stochastic Games

G4.1 Expected Value

G4.2 Stochastic Games

G4.3 Expectiminimax

G4.4 Summary

Board Games: Overview

chapter overview:

- ▶ G1. Introduction and State of the Art
- ► G2. Minimax Search and Evaluation Functions
- ► G3. Alpha-Beta Search
- ► G4. Stochastic Games
- ► G5. Monte-Carlo Tree Search Framework
- ▶ G6. Monte-Carlo Tree Search Variants

G4.1 Expected Value

Discrete Random Variable

- a random event (like the result of a die roll)
 - is described in terms of a random variable X
 - with associated domain dom(X)
 - and a probability distribution over the domain
- ▶ if the number of outcomes of a random event is finite (like here), the random variable is a discrete random variable
- ▶ and the probability distribution is given as a probability P(X = x) that the outcome is $x \in dom(X)$

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks and can afford one share
- your analyst expects these stock price changes:

```
Bellman Inc. Markov Tec.
+2 with 30% +4 with 20%
+1 with 60% +2 with 30%
\pm 0 with 10% -1 with 50%
```

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks and can afford one share
- your analyst expects these stock price changes:

Bellman Inc. +2 with 30% +1 with 60% ±0 with 10% Harkov Tec. +4 with 20% +2 with 30% -1 with 50%

formal model:

- discrete random variables B and M
- $dom(B) = \{2, 1, 0\}$ $dom(M) = \{4, 2, -1\}$
- P(B=2) = 0.3 P(M=4) = 0.2 P(B=1) = 0.6 P(M=2) = 0.3P(B=0) = 0.1 P(M=-1) = 0.5

Expected Value

- ▶ the expected value $\mathbb{E}[X]$ of a random variable X is a weighted average of its outcomes
- ▶ it is computed as the probability-weighted sum of all outcomes $x \in dom(X)$, i.e.,

$$\mathbb{E}[X] = \sum_{x \in \text{dom}(X)} P(X = x) \cdot x$$

 in stochastic environments, it is rational to deal with uncertainty by optimizing expected values

Expected Value: Example

formal model:

- discrete random variablesB and M
- $dom(B) = \{2, 1, 0\}$ $dom(M) = \{4, 2, -1\}$
- P(B=2) = 0.3 P(M=4) = 0.2 P(B=1) = 0.6 P(M=2) = 0.3P(B=0) = 0.1 P(M=-1) = 0.5

Expected Value: Example

formal model:

- discrete random variablesB and M
- $dom(B) = \{2, 1, 0\}$ $dom(M) = \{4, 2, -1\}$
- P(B=2) = 0.3 P(M=4) = 0.2 P(B=1) = 0.6 P(M=2) = 0.3P(B=0) = 0.1 P(M=-1) = 0.5

expected gain:

$$\mathbb{E}[B] = P(B=2) \cdot 2 + P(B=1) \cdot 1 + P(B=0) \cdot 0$$

= 0.3 \cdot 2 + 0.6 \cdot 1 + 0.1 \cdot 0 = 1.2

$$\mathbb{E}[M] = P(M = 4) \cdot 4 + P(M = 2) \cdot 2 + P(M = -1) \cdot -1$$

= 0.2 \cdot 4 + 0.3 \cdot 2 + 0.5 \cdot -1 = 0.9

Expected Value: Example

formal model:

- discrete random variablesB and M
- $dom(B) = \{2, 1, 0\}$ $dom(M) = \{4, 2, -1\}$
- P(B=2) = 0.3 P(M=4) = 0.2 P(B=1) = 0.6 P(M=2) = 0.3P(B=0) = 0.1 P(M=-1) = 0.5

rational decision: buy Bellman Inc.

expected gain:

$$\mathbb{E}[B] = P(B=2) \cdot 2 + P(B=1) \cdot 1 + P(B=0) \cdot 0$$

= 0.3 \cdot 2 + 0.6 \cdot 1 + 0.1 \cdot 0 = 1.2

$$\mathbb{E}[M] = P(M=4)\cdot 4 + P(M=2)\cdot 2 + P(M=-1)\cdot -1$$

= 0.2 \cdot 4 + 0.3 \cdot 2 + 0.5 \cdot -1 = 0.9

G4. Board Games: Stochastic Games Stochastic Games

G4.2 Stochastic Games

Definition

Definition (stochastic game)

A stochastic game is a

7-tuple $S = \langle S, A, T, s_l, S_G, utility, player \rangle$ with

- ► finite set of positions *S*
- ► finite set of moves A
- ▶ transition function $T: S \times A \times S \mapsto [0,1]$ that is well-defined for $\langle s, a \rangle$ (see below)
- ▶ initial position $s_1 \in S$
- ▶ set of terminal positions $S_G \subseteq S$
- utility function utility : $S_G \to \mathbb{R}$
- ▶ player function player : $S \setminus S_G \rightarrow \{MAX, MIN\}$

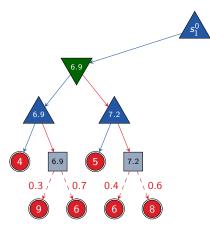
A transition function is well-defined for $\langle s,a\rangle$ if $\sum_{s'\in S} T(s,a,s')=1$ (then a is applicable in s) or $\sum_{s'\in S} T(s,a,s')=0$.

Example: Stochastic Inc-and-Square Game

- As an example, we consider a variant of the bounded inc-and-square game from Chapter G1.
- The sqr move now acts stochastically:
 - It squares the current value $v \pmod{10}$ with probability $\frac{v}{10}$.
 - Otherwise it doubles the current value $v \pmod{10}$ (with prob. $1 \frac{v}{10}$).
- ▶ We also reduce the maximum game length to 3 moves (counting both players) to make the example smaller.
- Everything else stays the same.

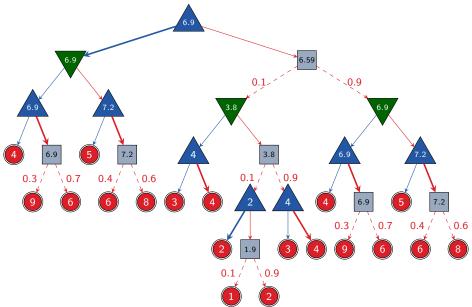
G4.3 Expectiminimax

Idea and Example



- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Idea and Example



Discussion

- expectiminimax is the simplest (decent) search algorithm for stochastic games
- yields optimal policy (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly)
- MAX obtains at least the utility value computed for the root in expectation, no matter how MIN plays
- if MIN plays perfectly, MAX obtains exactly the computed value in expectation

The same improvements as for minimax are possible (evaluation functions, alpha-beta search).

G4. Board Games: Stochastic Games Summary

G4.4 Summary

Summary

- Stochastic games are board games with an additional element of chance.
- Expectiminimax is a minimax variant for stochastic games with identical behavior in MAX and MIN nodes.
- In chance nodes, it propagates the expected value (probability-weighted sum) of all successors.
- Expectiminimax has same guarantees as minimax, but in expectation.