Foundations of Artificial Intelligence

G4. Board Games: Stochastic Games

Malte Helmert
University of Basel

May 15, 2024

Foundations of Artificial Intelligence

 May 15, 2024 - G4. Board Games: Stochastic Games
G4.1 Expected Value

G4.2 Stochastic Games

G4.3 Expectiminimax

G4.4 Summary

Board Games: Overview

chapter overview:

- G1. Introduction and State of the Art
- G2. Minimax Search and Evaluation Functions
- G3. Alpha-Beta Search
- G4. Stochastic Games
- G5. Monte-Carlo Tree Search Framework
- G6. Monte-Carlo Tree Search Variants

G4.1 Expected Value

Discrete Random Variable

- a random event (like the result of a die roll)
- is described in terms of a random variable X
- with associated domain $\operatorname{dom}(X)$
- and a probability distribution over the domain
- if the number of outcomes of a random event is finite (like here), the random variable is a discrete random variable
- and the probability distribution is given as a probability $P(X=x)$ that the outcome is $x \in \operatorname{dom}(X)$

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks and can afford one share
- your analyst expects these stock price changes:
Bellman Inc. Markov Tec.
+2 with $30 \%+4$ with 20%
+1 with $60 \% \quad+2$ with 30%
± 0 with $10 \% \quad-1$ with 50%

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks and can afford one share
- your analyst expects these stock price changes:
Bellman Inc. Markov Tec. +2 with $30 \% \quad+4$ with 20% +1 with $60 \% \quad+2$ with 30% ± 0 with $10 \% \quad-1$ with 50%
formal model:
- discrete random variables B and M
- $\operatorname{dom}(B)=\{2,1,0\}$
$\operatorname{dom}(M)=\{4,2,-1\}$
- $P(B=2)=0.3 \quad P(M=4)=0.2$
$P(B=1)=0.6 \quad P(M=2)=0.3$
$P(B=0)=0.1 \quad P(M=-1)=0.5$

Expected Value

- the expected value $\mathbb{E}[X]$ of a random variable X is a weighted average of its outcomes
- it is computed as the probability-weighted sum of all outcomes $x \in \operatorname{dom}(X)$, i.e.,

$$
\mathbb{E}[X]=\sum_{x \in \operatorname{dom}(X)} P(X=x) \cdot x
$$

- in stochastic environments, it is rational to deal with uncertainty by optimizing expected values

Expected Value: Example

formal model:

- discrete random variables
B and M
- $\operatorname{dom}(B)=\{2,1,0\}$

$$
\operatorname{dom}(M)=\{4,2,-1\}
$$

- $P(B=2)=0.3 \quad P(M=4)=0.2$
$P(B=1)=0.6 \quad P(M=2)=0.3$
$P(B=0)=0.1 \quad P(M=-1)=0.5$

Expected Value: Example

$$
\begin{aligned}
& \text { formal model: } \\
& \text { - discrete random variables } \\
& B \text { and } M \\
& \text { expected gain: } \\
& \mathbb{E}[B]=P(B=2) \cdot 2+P(B=1) \cdot 1+P(B=0) \cdot 0 \\
& =0.3 \cdot 2+0.6 \cdot 1+0.1 \cdot 0=1.2 \\
& \mathbb{E}[M]=P(M=4) \cdot 4+P(M=2) \cdot 2+P(M=-1) \cdot-1 \\
& =0.2 \cdot 4+0.3 \cdot 2+0.5 \cdot-1=0.9 \\
& \text { - } P(B=2)=0.3 \quad P(M=4)=0.2 \\
& P(B=1)=0.6 \quad P(M=2)=0.3 \\
& P(B=0)=0.1 \quad P(M=-1)=0.5
\end{aligned}
$$

Expected Value: Example

$$
\begin{aligned}
& \text { formal model: } \\
& \text { - discrete random variables } \\
& B \text { and } M \\
& \text { expected gain: } \\
& \mathbb{E}[B]=P(B=2) \cdot 2+P(B=1) \cdot 1+P(B=0) \cdot 0 \\
& =0.3 \cdot 2+0.6 \cdot 1+0.1 \cdot 0=1.2 \\
& \mathbb{E}[M]=P(M=4) \cdot 4+P(M=2) \cdot 2+P(M=-1) \cdot-1 \\
& =0.2 \cdot 4+0.3 \cdot 2+0.5 \cdot-1=0.9 \\
& \text { - } P(B=2)=0.3 \quad P(M=4)=0.2 \\
& P(B=1)=0.6 \quad P(M=2)=0.3 \\
& P(B=0)=0.1 \quad P(M=-1)=0.5
\end{aligned}
$$

rational decision: buy Bellman Inc.

G4.2 Stochastic Games

Definition

Definition (stochastic game)
A stochastic game is a
7-tuple $\mathcal{S}=\left\langle S, A, T, s_{I}, S_{\mathrm{G}}\right.$, utility, player \rangle with

- finite set of positions S
- finite set of moves A
- transition function $T: S \times A \times S \mapsto[0,1]$ that is well-defined for $\langle s, a\rangle$ (see below)
- initial position $s_{l} \in S$
- set of terminal positions $S_{\mathrm{G}} \subseteq S$
- utility function utility: $S_{G} \rightarrow \mathbb{R}$
- player function player: $S \backslash S_{G} \rightarrow\{$ MAX, MIN $\}$

A transition function is well-defined for $\langle s, a\rangle$ if $\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)=1$ (then a is applicable in s) or $\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)=0$.

Example: Stochastic Inc-and-Square Game

- As an example, we consider a variant of the bounded inc-and-square game from Chapter G1.
- The sqr move now acts stochastically:
- It squares the current value $v(\bmod 10)$ with probability $\frac{v}{10}$.
- Otherwise it doubles the current value $v(\bmod 10)$ (with prob. $1-\frac{v}{10}$).
- We also reduce the maximum game length to 3 moves (counting both players) to make the example smaller.
- Everything else stays the same.

G4.3 Expectiminimax

Idea and Example

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children
- chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Idea and Example

Discussion

- expectiminimax is the simplest (decent) search algorithm for stochastic games
- yields optimal policy (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly)
- MAX obtains at least the utility value computed for the root in expectation, no matter how MIN plays
- if MIN plays perfectly, MAX obtains exactly the computed value in expectation

The same improvements as for minimax are possible (evaluation functions, alpha-beta search).

G4.4 Summary

Summary

- Stochastic games are board games with an additional element of chance.
- Expectiminimax is a minimax variant for stochastic games with identical behavior in MAX and MIN nodes.
- In chance nodes, it propagates the expected value (probability-weighted sum) of all successors.
- Expectiminimax has same guarantees as minimax, but in expectation.

