Foundations of Artificial Intelligence G2. Board Games: Minimax Search and Evaluation Functions

Malte Helmert

University of Basel

May 13, 2024

Board Games: Overview

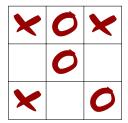
chapter overview:

- G1. Introduction and State of the Art
- G2. Minimax Search and Evaluation Functions
- G3. Alpha-Beta Search
- G4. Stochastic Games
- G5. Monte-Carlo Tree Search Framework
- G6. Monte-Carlo Tree Search Variants

Minimax Search

Example: Tic-Tac-Toe

consider it's the turn of player \mathbf{X} :

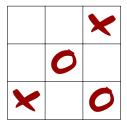


If the utility for win/draw/lose for player \times is +1/0/-1, what is an appropriate utility value for the depicted position?

Summary 00

Example: Tic-Tac-Toe

consider it's the turn of player \mathbf{X} :



And what about this one?

Minimax Search

Evaluation Functions

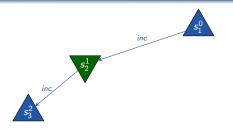
Summary 00

Idea and Example

Evaluation Functions

Summary 00

Idea and Example

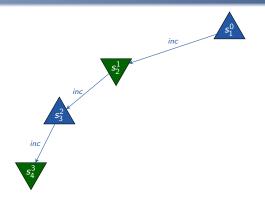


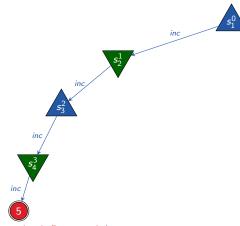
Minimax Search

Evaluation Functions

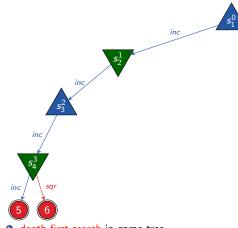
Summary 00

Idea and Example

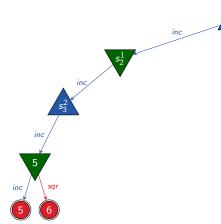




- depth-first search in game tree
- determine utility value of terminal position with utility function



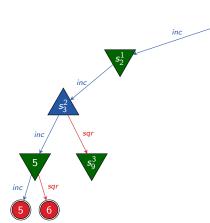
- depth-first search in game tree
- determine utility value of terminal position with utility function



depth-first search in game tree

- determine utility value of terminal position with utility function
- compute utility value of inner nodes

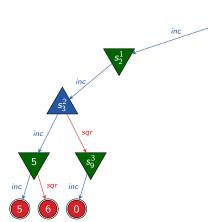
- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



• depth-first search in game tree

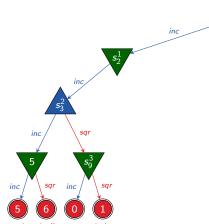
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



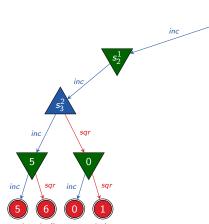
- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



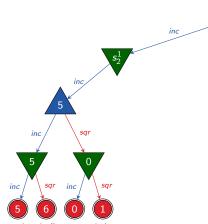
- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



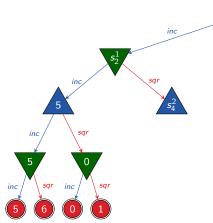
- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children

Evaluation Functions

Summary 00

Idea and Example



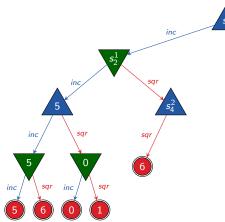
- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children

Evaluation Functions

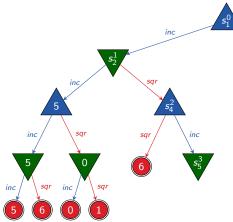
Summary 00

Idea and Example



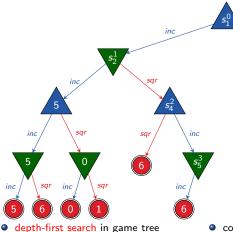
- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



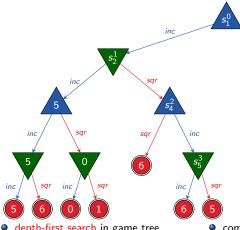
- depth-first search in game tree
- determine utility value of terminal position with utility function
- compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



- determine utility value of terminal position with utility function
- compute utility value of inner nodes

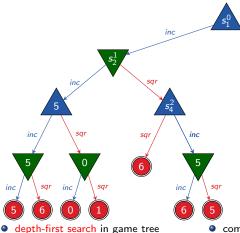
- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



- depth-first search in game tree
- determine utility value of terminal position with utility function

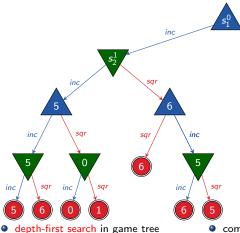
compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



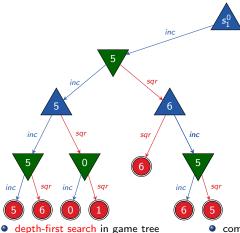
 determine utility value of terminal position with utility function compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



 determine utility value of terminal position with utility function compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



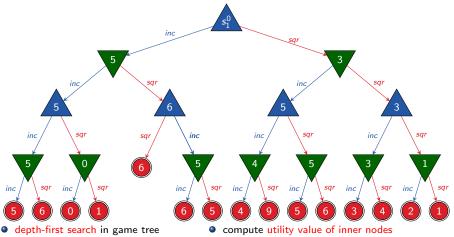
• determine utility value of terminal position with utility function

compute utility value of inner nodes

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children

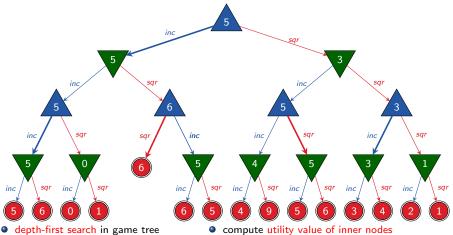
Evaluation Functions

Idea and Example



• determine utility value of terminal position with utility function

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children



- determine utility value of terminal position with utility function
- strategy: action that maximizes utility value (minimax decision)

- MIN's turn: utility value is minimum of utility values of children
- MAX's turn: utility value is maximum of utility values of children

Minimax: Pseudo-Code

function minimax(*p*)

if p is terminal position:
 return ⟨utility(p), none⟩
best_move := none
if player(p) = MAX:

 $v := -\infty$

else:

```
v := \infty
for each \langle move, p' \rangle \in succ(p):
\langle v', best\_move' \rangle := minimax(p')
if (player(p) = MAX \text{ and } v' > v) or
(player(p) = MIN \text{ and } v' < v):
v := v'
best\_move := move
return \langle v, best\_move \rangle
```

Discussion

- minimax is the simplest (decent) search algorithm for games
- yields optimal strategy (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly)
- MAX obtains at least the utility value computed for the root, no matter how MIN plays
- if MIN plays perfectly, MAX obtains exactly the computed value

Limitations of Minimax

What if the size of the game tree is too big for minimax?

 \rightsquigarrow heuristic alpha-beta search

- heuristics (evaluation functions): rest of this chapter
- alpha-beta search: next chapter

Evaluation Functions

Evaluation Functions

Definition (evaluation function)

Let S be a game with set of positions S. An evaluation function for S is a function

 $h:S\to \mathbb{R}$

which assigns a real-valued number to each position $s \in S$.

Looks familiar? Commonalities? Differences?

Intuition

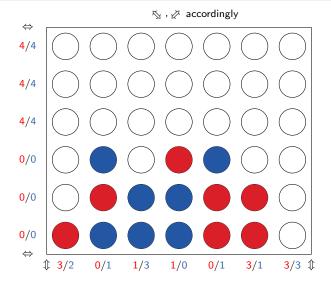
- problem: game tree too big
- idea: search only up to predefined depth
- depth reached: estimate the utility value according to heuristic criteria (as if terminal position had been reached)

accuracy of evaluation function is crucial

- high values should relate to high "winning chances"
- at the same time, the evaluation should be efficiently computable in order to be able to search deeply

Evaluation Functions

Example: Connect Four



evalution function: difference of number of possible lines of four

General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

$$h(s) = w_0 + w_1 f_1(s) + w_2 f_2(s) + \cdots + w_n f_n(s),$$

where w_i are weights and f_i are features.

General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

$$h(s) = w_0 + w_1 f_1(s) + w_2 f_2(s) + \cdots + w_n f_n(s),$$

where w_i are weights and f_i are features.

- assumes that feature contributions are mutually independent (usually wrong but acceptable assumption)
- features are (usually) provided by human experts
- weights provided by human experts or learned automatically

General Method: Linear Evaluation Functions

expert knowledge often represented with weighted linear functions:

$$h(s) = w_0 + w_1 f_1(s) + w_2 f_2(s) + \cdots + w_n f_n(s),$$

where w_i are weights and f_i are features.

example: evaluation function in chess (cf. Lolli 1763)

feature	f ^{player}	f _k ^{player}	f _b ^{player}	f _r player	f ^{player}
no. of pieces	pawn	knight	bishop	rook	queen
weight for MAX	1	3	3	5	9
weight for MIN	-1	-3	-3	-5	-9

often additional features based on pawn structure, mobility, ...

General Method: State Value Networks

alternative: evaluation functions based on neural networks

- value network takes position features as input (usually provided by human experts)
- and outputs utility value prediction
- weights of network learned automatically

General Method: State Value Networks

alternative: evaluation functions based on neural networks

- value network takes position features as input (usually provided by human experts)
- and outputs utility value prediction
- weights of network learned automatically

example: value network of AlphaGo

- start with policy network trained on human expert games
- train sequence of policy networks by self-play against earlier version
- final step: convert to utility value network (slightly worse informed but much faster)
- → Mastering the game of Go with deep neural networks and tree search (Silver et al., 2016)

How Deep Shall We Search?

- objective: search as deeply as possible within a given time
- problem: search time difficult to predict
- solution: iterative deepening
 - sequence of searches of increasing depth
 - time expires: return result of previously finished search
 - overhead acceptable (~~ Chapter B8)
- refinement: search deeper in "turbulent" states (i.e., with strong fluctuations of the evaluation function)
 quiescence search
 - example chess: deepen the search after capturing moves

Summary

- Minimax is a tree search algorithm that plays perfectly (in the game-theoretic sense), but its complexity is $O(b^d)$ (branching factor *b*, search depth *d*).
- In practice, the search depth must be bounded

 apply evaluation functions.