Foundations of Artificial Intelligence F4. Automated Planning: Delete Relaxation Heuristics

Malte Helmert

University of Basel

May 6, 2024

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 6, 2024 1 / 24

Foundations of Artificial Intelligence May 6, 2024 — F4. Automated Planning: Delete Relaxation Heuristics

F4.1 Relaxed Planning Graphs

F4.2 Maximum and Additive Heuristics

F4.3 FF Heuristic

F4.4 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Automated Planning: Overview

Chapter overview: automated planning

- F1. Introduction
- ► F2. Planning Formalisms
- ► F3. Delete Relaxation
- ► F4. Delete Relaxation Heuristics
- ► F5. Abstraction
- ► F6. Abstraction Heuristics

F4.1 Relaxed Planning Graphs

Relaxed Planning Graphs

- relaxed planning graphs: represent which variables in Π⁺ can be reached and how
- graphs with variable layers V^i and action layers A^i
 - ▶ variable layer V^0 contains the variable vertex v^0 for all $v \in I$
 - action layer Aⁱ⁺¹ contains the action vertex aⁱ⁺¹ for action a if Vⁱ contains the vertex vⁱ for all v ∈ pre(a)
 - ► variable layer Vⁱ⁺¹ contains the variable vertex vⁱ⁺¹ if previous variable layer contains vⁱ, or previous action layer contains aⁱ⁺¹ with v ∈ add(a)

German: relaxierter Planungsgraph, Variablenknoten, Aktionsknoten

Relaxed Planning Graphs (Continued)

- ▶ a goal vertex g if $v^n \in V^n$ for all $v \in G$, where n is last layer
- ▶ graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers ~ Vⁱ⁺¹ = Vⁱ and Aⁱ⁺¹ = Aⁱ (Why?)
- directed edges:
 - ▶ from v^i to a^{i+1} if $v \in pre(a)$ (precondition edges)
 - from a^i to v^i if $v \in add(a)$ (effect edges)
 - ▶ from vⁱ to vⁱ⁺¹ (no-op edges)
 - from v^n to g if $v \in G$ (goal edges)

German: Zielknoten, Vorbedingungskanten, Effektkanten, Zielkanten, No-Op-Kanten

Illustrative Example

We write actions a with $pre(a) = \{p_1, \ldots, p_k\}$, $add(a) = \{q_1, \ldots, q_l\}$, $del(a) = \emptyset$ and cost(a) = cas $p_1, \ldots, p_k \xrightarrow{c} q_1, \ldots, q_l$

$$V = \{m, n, o, p, q, r, s, t\}$$
$$I = \{m\}$$
$$G = \{o, p, q, r, s\}$$
$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$
$$a_1 = m \xrightarrow{3} n, o$$
$$a_2 = m, o \xrightarrow{1} p$$
$$a_3 = n, o \xrightarrow{1} q$$
$$a_4 = n \xrightarrow{1} r$$
$$a_5 = p \xrightarrow{1} q, r$$
$$a_6 = p \xrightarrow{1} s$$

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Illustrative Example: Relaxed Planning Graph

Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph **function** generic-rpg-heuristic($\langle V, I, G, A \rangle$, s): $\Pi^+ := \langle V, s, G, A^+ \rangle$ for $k \in \{0, 1, 2, ...\}$: $rpg := RPG_k(\Pi^+)$ [relaxed planning graph to layer k] if rpg contains a goal node: Annotate nodes of *rpg*. if termination criterion is true: return heuristic value from annotations else if graph has stabilized: return ∞

→ general template for RPG heuristics

 \rightsquigarrow to obtain concrete heuristic: instantiate highlighted elements

M. Helmert (University of Basel)

Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:

- maximum heuristic h^{max} (Bonet & Geffner, 1999)
- additive heuristic h^{add} (Bonet, Loerincs & Geffner, 1997)
- Keyder & Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:

The most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions.

F4.2 Maximum and Additive Heuristics

Maximum and Additive Heuristics

- h^{max} and h^{add} are the simplest RPG heuristics.
- Vertex annotations are numerical values.
- The vertex values estimate the costs
 - to make a given variable true
 - to reach and apply a given action
 - to reach the goal

Maximum and Additive Heuristics: Filled-in Template

Maximum and Additive Heuristics: Intuition

intuition:

- variable vertices:
 - choose cheapest way of reaching the variable
- action/goal vertices:
 - h^{max} is optimistic: assumption: when reaching the most expensive precondition variable, we can reach the other precondition variables in parallel (hence maximization of costs)
 - h^{add} is pessimistic: assumption: all precondition variables must be reached completely independently of each other (hence summation of costs)

Illustrative Example: h^{\max}

Illustrative Example: h^{add}

h^{max} and h^{add} : Remarks

comparison of h^{max} and h^{add} :

- both are safe and goal-aware
- h^{\max} is admissible and consistent; h^{add} is neither.
- \rightsquigarrow h^{add} not suited for optimal planning
- However, h^{add} is usually much more informative than h^{max} . Greedy best-first search with h^{add} is a decent algorithm.
- Apart from not being admissible, h^{add} often vastly overestimates the actual costs because positive synergies between subgoals are not recognized.

→ FF heuristic

F4.3 FF Heuristic

FF Heuristic

The FF Heuristic

identical to h^{add} , but additional steps at the end:

- Mark goal vertex.
- Apply the following marking rules until nothing more to do:
 - marked action or goal vertex? ~ mark all predecessors
 - ▶ marked variable vertex vⁱ in layer i ≥ 1?
 → mark one predecessor with minimal h^{add} value (tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

- The actions corresponding to the marked action vertices build a relaxed plan.
- The cost of this plan is the heuristic value.

Illustrative Example: h^{FF}

FF Heuristic: Remarks

- Like h^{add}, h^{FF} is safe and goal-aware, but neither admissible nor consistent.
- approximation of h⁺ which is always at least as good as h^{add}
- usually significantly better
- can be computed in almost linear time (O(n log n)) in the size of the description of the planning task
- computation of heuristic value depends on tie-breaking of marking rules (h^{FF} not well-defined)
- one of the most successful planning heuristics

Comparison of Relaxation Heuristics

```
Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task \langle V, I, G, A \rangle.

Then

h^{\max}(s) \le h^+(s) \le h^*(s)

h^{\max}(s) \le h^+(s) \le h^{\text{FF}}(s) \le h^{\text{add}}(s)

h^* and h^{\text{FF}} are incomparable

h^* and h^{\text{add}} are incomparable
```

further remarks:

- For non-admissible heuristics, it is generally neither good nor bad to compute higher values than another heuristic.
- For relaxation heuristics, the objective is to approximate h⁺ as closely as possible.

F4.4 Summary

Summary

- Many delete relaxation heuristics can be viewed as computations on relaxed planning graphs (RPGs).
- examples: h^{max}, h^{add}, h^{FF}
- \blacktriangleright h^{max} and h^{add} propagate numeric values in the RPGs
 - difference: h^{max} computes the maximum of predecessor costs for action and goal vertices; h^{add} computes the sum
- *h*^{FF} marks vertices and sums the costs of marked action vertices.
- ▶ generally: $h^{\max}(s) \le h^+(s) \le h^{\mathsf{FF}}(s) \le h^{\mathsf{add}}(s)$