Foundations of Artificial Intelligence F3. Automated Planning: Delete Relaxation

Malte Helmert

University of Basel

May 6, 2024

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 6, 2024 1 / 20

Foundations of Artificial Intelligence May 6, 2024 — F3. Automated Planning: Delete Relaxation

F3.1 How to Design Heuristics?

F3.2 Delete Relaxation

F3.3 Examples

F3.4 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Automated Planning: Overview

Chapter overview: automated planning

- F1. Introduction
- ► F2. Planning Formalisms
- ► F3. Delete Relaxation
- ► F4. Delete Relaxation Heuristics
- ► F5. Abstraction
- ► F6. Abstraction Heuristics

F3.1 How to Design Heuristics?

A Simple Planning Heuristic

The STRIPS planner (Fikes & Nilsson, 1971) uses the number of goals not yet satisfied in a STRIPS planning task as heuristic:

$$h(s) = |G \setminus s|.$$

intuition: fewer unsatisfied goals \rightsquigarrow closer to goal state \rightsquigarrow STRIPS heuristic

Problems of STRIPS Heuristic

drawback of STRIPS heuristic?

rather uninformed:

For state s, if there is no applicable action a in s such that applying a in s satisfies strictly more (or fewer) goals, then all successor states have the same heuristic value as s.

 ignores almost the whole task structure: The heuristic values do not depend on the actions.

 \rightsquigarrow we need better methods to design heuristics

Planning Heuristics

We consider two basic ideas for general heuristics:

- delete relaxation ~> this and next chapter
- ► abstraction ~→ Chapters F5–F6

Delete Relaxation: Basic Idea

Estimate solution costs by considering a simplified planning task, where all negative action effects are ignored.

F3.2 Delete Relaxation

Relaxed Planning Tasks: Idea

In STRIPS planning tasks,

good and bad effects are easy to distinguish:

- Add effects are always useful.
- Delete effects are always harmful.

Why?

idea for designing heuristics: ignore all delete effects

Relaxed Planning Tasks

German: Relaxierung von Aktionen

Definition (relaxation of planning tasks) The relaxation Π^+ of a STRIPS planning task $\Pi = \langle V, I, G, A \rangle$ is the task $\Pi^+ = \langle V, I, G, \{a^+ \mid a \in A\} \rangle$.

German: Relaxierung von Planungsaufgaben

M. Helmert (University of Basel)

Relaxed Planning Tasks: Terminology

- STRIPS planning tasks without delete effects are called relaxed planning tasks or delete-free planning tasks.
- Plans for relaxed planning tasks are called relaxed plans.
- ▶ If Π is a STRIPS planning task and π^+ is a plan for Π^+ , then π^+ is called relaxed plan for Π .

Optimal Relaxation Heuristic

Definition (optimal relaxation heuristic h^+)

Let Π be a STRIPS planning task with the relaxation $\Pi^+ = \langle V, I, G, A^+ \rangle$.

The optimal relaxation heuristic h^+ for Π maps each state s to the cost of an optimal plan for the planning task $\langle V, s, G, A^+ \rangle$.

In other words, the heuristic value for s is the optimal solution cost in the relaxation of Π with s as the initial state.

F3.3 Examples

Example: Logistics

Example: Logistics

Example (Logistics Task)

$$pre(move_{LR}) = \{at_{TL}\}, add(move_{LR}) = \{at_{TR}\}, \\ del(move_{LR}) = \{at_{TL}\}, cost(move_{LR}) = 1$$

$$pre(load_{AL}) = \{at_{TL}, at_{AL}\}, add(load_{AL}) = \{in_{AT}\}, \\ del(load_{AL}) = \{at_{AL}\}, cost(load_{AL}) = 1$$

$$pre(unload_{AL}) = \{at_{TL}, in_{AT}\}, add(unload_{AL}) = \{at_{AL}\}, \\ del(unload_{AL}) = \{in_{AT}\}, cost(unload_{AL}) = 1$$

$$\dots$$

Example: Logistics

- optimal plan:
 - load_{AL}
 - 2 move_{LR}
 - Inload_{AR}
 - Ioad_{BR}
 - 5 move_{RL}
 - 0 unload_{BL}
- optimal relaxed plan: ?

►
$$h^*(I) = 6, h^+(I) = ?$$

Example: 8-Puzzle

- actual goal distance: $h^*(s) = 17$
- Manhattan distance: $h^{MD}(s) = 5$
- optimal delete relaxation: $h^+(s) = 7$

relationship (no proof):

 h^+ dominates the Manhattan distance in the sliding tile puzzle (i.e., $h^{MD}(s) \le h^+(s) \le h^*(s)$ for all states s)

Relaxed Solutions: Suboptimal or Optimal?

- For general STRIPS planning tasks, h⁺ is an admissible and consistent heuristic (no proof).
- Can h⁺ be computed efficiently?
 - It is easy to solve delete-free planning tasks suboptimally. (How?)
 - optimal solution (and hence the computation of h⁺) is NP-hard (reduction from SET COVER)
- ln practice, heuristics approximate h^+ from below or above.

F3.4 Summary

Summary

delete relaxation:

- ignore negative effects (delete effects) of actions
- use solution costs of relaxed planning task as heuristic for solution costs of the original planning task
- computation of optimal relaxed solution costs h⁺ is NP-hard, hence usually approximated from below or above