Foundations of Artificial Intelligence

F2. Automated Planning: Planning Formalisms

Malte Helmert

University of Basel

April 29, 2024



Automated Planning: Overview

Chapter overview: automated planning

F1.
F2.
F3.
F4.
F5.
Fo.

Introduction

Planning Formalisms

Delete Relaxation

Delete Relaxation Heuristics
Abstraction

Abstraction Heuristics



Four Formalisms



Four Formalisms
oe

Four Planning Formalisms

@ A description language for state spaces (planning tasks)
is called a planning formalism.
@ We introduce four planning formalisms:
@ STRIPS (Stanford Research Institute Problem Solver)
@ ADL (Action Description Language)
© SAST (Simplified Action Structures)
@Q PDDL (Planning Domain Definition Language)
@ STRIPS and SAS™ are the most simple formalisms;
in the next chapters, we only consider these.



STRIPS



STRIPS
0@0000

STRIPS: Basic Concepts

basic concepts of STRIPS:
@ STRIPS is the most simple common planning formalism.

@ state variables are binary (true or false)



STRIPS
0@0000

STRIPS: Basic Concepts

basic concepts of STRIPS:
@ STRIPS is the most simple common planning formalism.
@ state variables are binary (true or false)

@ states s (based on a given set of state variables V)
can be represented in two equivalent ways:
o as assignments s: V — {F, T}
e assets s C V,
where s encodes the set of state variables that are true in s

We will use the set representation.



STRIPS
0@0000

STRIPS: Basic Concepts

basic concepts of STRIPS:
@ STRIPS is the most simple common planning formalism.
@ state variables are binary (true or false)
@ states s (based on a given set of state variables V)

can be represented in two equivalent ways:

o as assignments s: V — {F, T}
e assets s C V,
where s encodes the set of state variables that are true in s

We will use the set representation.

@ goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

o effects of actions are given as sets of variables
that are set to true and set to false, respectively



STRIPS
00@000

STRIPS Planning Task

Definition (STRIPS Planning Task)

A STRIPS planning task is a 4 tuple N = (V. /I, G, A) with
@ V: finite set of state variables
@ |/ C V: the initial state
@ G C V: the set of goals

@ A: finite set of actions,
where for all actions a € A, the following is defined:
pre(a) C V: the preconditions of a
o add(a) C V: the add effects of a
o del(a) C V: the delete effects of a
o cost(a) € Ny: the costs of a

German: STRIPS-Planungsaufgabe, Zustandsvariablen,
Anfangszustand, Ziele, Aktionen, Add-/Delete-Effekte, Kosten
remark: action costs are an extension of “traditional” STRIPS



Four Form ns STRIPS
00 000800

State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)
Let M= (V,I, G, A) be a STRIPS planning task.
Then M induces the state space S(IN) = (S, A, cost, T, s, S):
o set of states: S =2Y (= power set of V)
@ actions: actions A as defined in Il
@ action costs: cost as defined in [l

e transitions: s = s for states s,s’ € S and action a € A iff

o pre(a) C s (preconditions satisfied)
o s’ = (s\ del(a)) U add(a) (effects are applied)

@ initial state: s =/

@ goal states: s € Sg for state s iff G C s (goals reached)

German: induziert den Zustandsraum



F our Formalisms STRIPS ‘ SAS™ and PDDL Summar
000000 00

Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)
MN=(V,I, G,A) with:
o V= {OnR,B, OnR ¢, 0N Rr,0NB G,0N: R, 0NG B,
on-tabler, on-tableg, on-table,
clearg, clearg, clearc }
o | = {on¢ g, on-tabler, on-tableg, clear:, clearg }
o G = {OnR7B, OnB7G}
o A= {moveg g, mover ¢ g, MOVER R ¢,
movep ¢ r, MOVEG R B, MOVEC B R,
to-tabler g, to-tabler (;, to-tableg g,
to-tableg (., to-table r, to-table: g,
from-tabler g, from-tabler (., from-tableg g,
from-tableg (., from-table; g, from-table; g}




Four Formalisms STRIPS
[o]e] 0000e0

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

move actions encode moving a block
from one block to another

example:
o pre(moveg g ) = {ongr g, clearg, clear: }
e add(mover g.) = {ong,c, clearg}
o del(mover p.) = {ong B, clear: }
°

cost(moveg g ) =1




F our Formalism STRIPS ‘ AS™ and PDD Summar
0000e0 00 [e]e)

Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

to-table actions encode moving a block
from a block to the table

example:
o pre(to-tabler g) = {ongr g, clearr}
e add(to-tabler g) = {on-tabler, clearg }
o del(to-tabler g) = {onr g}
o cost(to-tabler g) =1




F our Formalisms STRIPS ‘ SAS™ and PDDL Summar
0000e0 00 [e]e)

Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

from-table actions encode moving a block
from the table to a block

example:
o pre(from-tabler g) = {on-tabler, clearg, clearg}
o add(from-tabler g) = {onr g}
o del(from-tabler g) = {on-tabler, clearg}

o cost(from-tabler g) =1




STRIPS
00000e

Why STRIPS?

@ STRIPS is particularly simple.

~ simplifies the design and implementation
of planning algorithms
@ often cumbersome for the user
to model tasks directly in STRIPS
@ but: STRIPS is equally “powerful”
to much more complex planning formalisms

~= automatic “compilers” exist that translate more complex
formalisms (like ADL and SAS™) to STRIPS



ADL, SAS™ and PDDL



ADL, SAS™ and PDDL
0800

Basic Concepts of ADL

basic concepts of ADL:

o Like STRIPS, ADL uses propositional variables (true/false)
as state variables.

@ preconditions of actions and goal are arbitrary logic formulas
(action applicable/goal reached in states
that satisfy the formula)

@ in addition to STRIPS effects, there are conditional effects:
variable v is only set to true/false if a given logical formula
is true in the current state



ADL, SAS™ and PDDL
[e]e] o]

Basic Concepts of SAS™

basic concepts of SAS™:
@ very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)
@ states are assignments to these variables (cf. CSPs)

@ preconditions and goals given as partial assignments
example: {v; — a, v3 — b} as preconditions (or goals)
o If s(vi) = aand s(v3) = b,
then the action is applicable in s (or goal is reached)
o values of other variables do not matter
o effects are assignments to subset of variables
example: effect {v3 — b, vo — c} means

o In the successor state s, s’(v;) = b and s'(v,) = c.
o All other variables retain their values.



ADL, SASt and PDDL
[eJele] )

Basic Concept of PDDL

o PDDL is the standard language used in practice
to describe planning tasks.

@ descriptions in (restricted) predicate logic instead of
propositional logic (~> even more compact)

@ other features like numeric variables and derived variables
(axioms) for defining complex logical conditions
(formulas that are automatically evaluated in every state
and can, e.g., be used in preconditions)

@ There exist defined PDDL fragments for STRIPS and ADL;
many planners only support the STRIPS fragment.

example: blocks world in PDDL



Summary



Summary
oce

Summary

planning formalisms:
o STRIPS: particularly simple, easy to handle for algorithms

e binary state variables
e preconditions, add and delete effects, goals:
sets of variables

@ ADL: extension of STRIPS

e logic formulas for complex preconditions and goals
e conditional effects
@ SAST: extension of STRIPS
e state variables with arbitrary finite domains
o PDDL: input language used in practice
e based on predicate logic
(more compact than propositional logic)

e only partly supported by most algorithms
(e.g., STRIPS or ADL fragment)



	Four Formalisms
	

	STRIPS
	

	ADL, SAS+ and PDDL
	

	Summary
	


