Foundations of Artificial Intelligence E3. Propositional Logic: Reasoning and Resolution

Malte Helmert

University of Basel

April 22, 2024

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 22, 2024 1 / 21

Foundations of Artificial Intelligence April 22, 2024 — E3. Propositional Logic: Reasoning and Resolution

E3.1 Reasoning

E3.2 Resolution

E3.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Propositional Logic: Overview

Chapter overview: propositional logic

- ▶ E1. Syntax and Semantics
- E2. Equivalence and Normal Forms
- E3. Reasoning and Resolution
- ► E4. DPLL Algorithm
- E5. Local Search and Outlook

E3.1 Reasoning

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 22, 2024 4 / 21

Reasoning: Intuition

Reasoning: Intuition

- Generally, formulas only represent an incomplete description of the world.
- In many cases, we want to know if a formula logically follows from (a set of) other formulas.
- What does this mean?

Reasoning: Intuition

• example:
$$\varphi = (P \lor Q) \land (R \lor \neg P) \land S$$

- S holds in every model of φ.
 What about P, Q and R?
- \rightsquigarrow consider all models of φ :

$$I_1 = \{ P \mapsto \mathbf{F}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{F}, S \mapsto \mathbf{T} \}$$

$$I_2 = \{ P \mapsto \mathbf{F}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{T}, S \mapsto \mathbf{T} \}$$

$$I_3 = \{ P \mapsto \mathbf{T}, Q \mapsto \mathbf{F}, R \mapsto \mathbf{T}, S \mapsto \mathbf{T} \}$$

$$I_4 = \{ P \mapsto \mathbf{T}, Q \mapsto \mathbf{T}, R \mapsto \mathbf{T}, S \mapsto \mathbf{T} \}$$

Observation

- ▶ In all models of φ , the formula $Q \lor R$ holds as well.
- We say: " $Q \lor R$ logically follows from φ ."

Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of formulas. A formula ψ logically follows from Φ (in symbols: $\Phi \models \psi$) if all models of Φ are also models of ψ .

German: logische Konsequenz, folgt logisch

In other words: for each interpretation I, if $I \models \varphi$ for all $\varphi \in \Phi$, then also $I \models \psi$.

Question

How can we automatically compute if $\Phi \models \psi$?

- One possibility: Build a truth table. (How?)
- Are there "better" possibilities that (potentially) avoid generating the whole truth table?

Reasoning: Deduction Theorem

Proposition (deduction theorem) Let Φ be a finite set of formulas and let ψ be a formula. Then

$$\Phi \models \psi$$
 iff $(\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi$ is a tautology.

German: Deduktionssatz

Proof.

$$\begin{split} \Phi &\models \psi \\ \text{iff for each interpretation } I: \text{ if } I \models \varphi \text{ for all } \varphi \in \Phi, \text{ then } I \models \psi \\ \text{iff for each interpretation } I: \text{ if } I \models \bigwedge_{\varphi \in \Phi} \varphi, \text{ then } I \models \psi \\ \text{iff for each interpretation } I: I \not\models \bigwedge_{\varphi \in \Phi} \varphi \text{ or } I \models \psi \\ \text{iff for each interpretation } I: I \models (\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi \\ \text{iff } (\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi \text{ is tautology} \\ \Box \end{split}$$

Reasoning by Unsatisfiability Testing

Consequence of Deduction Theorem

Reasoning can be reduced to testing unsatisfiability.

Question: Does
$$\Phi \models \psi$$
 hold?

Idea:

• Let
$$\chi = (\bigwedge_{\varphi \in \Phi} \varphi) \to \psi$$
.

• We know that $\Phi \models \psi$ iff χ is a tautology.

- A formula is a tautology iff its negation is unsatisfiable.
- Hence, $\Phi \models \psi$ iff $\neg \chi$ is unsatisfiable.

► Use equivalences:

$$\neg \chi = \neg ((\bigwedge_{\varphi \in \Phi} \varphi) \to \psi) \equiv \neg (\neg (\bigwedge_{\varphi \in \Phi} \varphi) \lor \psi)$$

 $\equiv (\neg \neg (\bigwedge_{\varphi \in \Phi} \varphi) \land \neg \psi) \equiv \bigwedge_{\varphi \in \Phi} \varphi \land \neg \psi$

▶ We have that $\Phi \models \psi$ iff $\bigwedge_{\varphi \in \Phi} \varphi \land \neg \psi$ is unsatisfiable.

Algorithm for Reasoning

Question: Does $\Phi \models \psi$ hold?

Algorithm (given an algorithm for testing unsatisfiability):

• Let
$$\eta = \bigwedge_{\varphi \in \Phi} \varphi \land \neg \psi$$
.

- **2** Test if η is unsatisfiable.
- **3** If yes, return " $\Phi \models \psi$ ".

In the following: Can we test unsatisfiability in a more efficient way than by computing the whole truth table?

E3.2 Resolution

Sets of Clauses

for the rest of this chapter:

- prerequisite: formulas in conjunctive normal form
- clause represented as a set C of literals
- formula represented as a set Δ of clauses

Example

Let $\varphi = (P \lor Q) \land \neg P$.

- φ in conjunctive normal form
- φ consists of clauses ($P \lor Q$) and $\neg P$
- ▶ representation of φ as set of sets of literals: $\{\{P, Q\}, \{\neg P\}\}$

Sets of Clauses (Corner Cases)

Distinguish \perp (empty clause = empty set of literals) vs. \emptyset (empty set of clauses).

• $C = \bot (= \emptyset)$ represents a disjunction over zero literals:

$$\bigvee_{L\in\emptyset}L=\bot$$

• $\Delta_1 = \{\bot\}$ represents a conjunction over one clause:

$$\bigwedge_{\varphi \in \{\bot\}} \varphi = \bot$$

• $\Delta_2 = \emptyset$ represents a conjunction over zero clauses:

$$\bigwedge_{\varphi \in \emptyset} \varphi = \top$$

Resolution: Idea

Resolution

- method to test CNF formula φ for unsatisfiability
- \blacktriangleright idea: derive new clauses from φ that logically follow from φ
- \blacktriangleright if empty clause \bot can be derived $\leadsto \varphi$ unsatisfiable

German: Resolution

The Resolution Rule

$$\frac{C_1 \cup \{\ell\}, C_2 \cup \{\bar{\ell}\}}{C_1 \cup C_2}$$

• "From $C_1 \cup \{\ell\}$ and $C_2 \cup \{\overline{\ell}\}$, we can conclude $C_1 \cup C_2$."

- $C_1 \cup C_2$ is resolvent of parent clauses $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$.
- The literals l and l are called resolution literals, the corresponding proposition is called resolution variable.
- resolvent follows logically from parent clauses (Why?)

German: Resolutionsregel, Resolvent, Elternklauseln, Resolutionsliterale, Resolutionsvariable

Example

resolvent of
$$\{A, B, \neg C\}$$
 and $\{A, D, C\}$?

resolvents of
$$\{\neg A, B, \neg C\}$$
 and $\{A, D, C\}$?

Resolution: Derivations

Definition (derivation)

Notation: $R(\Delta) = \Delta \cup \{C \mid C \text{ is resolvent of two clauses in } \Delta\}$

A clause *D* can be derived from Δ (in symbols $\Delta \vdash D$) if there is a sequence of clauses $C_1, \ldots, C_n = D$ such that for all $i \in \{1, \ldots, n\}$ we have $C_i \in R(\Delta \cup \{C_1, \ldots, C_{i-1}\})$.

German: Ableitung, abgeleitet

Lemma (soundness of resolution) If $\Delta \vdash D$, then $\Delta \models D$.

Does the converse direction hold as well (completeness)? German: Korrektheit, Vollständigkeit

M. Helmert (University of Basel)

Resolution: Completeness?

The converse of the lemma does not hold in general.

example:

•
$$\{\{A, B\}, \{\neg B, C\}\} \models \{A, B, C\},$$
 but

▶ $\{\{A, B\}, \{\neg B, C\}\} \not\vdash \{A, B, C\}$

but: converse holds for special case of empty clause \perp (no proof)

Theorem (refutation-completeness of resolution) Δ is unsatisfiable iff $\Delta \vdash \bot$

German: Widerlegungsvollständigkeit

consequences:

- Resolution is a complete proof method for testing unsatisfiability of CNF formulas.
- Resolution can be used for general reasoning by reducing to a test for unsatisfiability of CNF formulas.

M. Helmert (University of Basel)

Example

Let
$$\Phi = \{P \lor Q, \neg P\}$$
. Does $\Phi \models Q$ hold?

Solution

- ▶ test if $((P \lor Q) \land \neg P) \to Q$ is tautology
- ▶ equivalently: test if $((P \lor Q) \land \neg P) \land \neg Q$ is unsatisfiable
- ▶ resulting set of clauses: $\Phi' = \{\{P, Q\}, \{\neg P\}, \{\neg Q\}\}$
- resolving $\{P, Q\}$ with $\{\neg P\}$ yields $\{Q\}$
- resolving $\{Q\}$ with $\{\neg Q\}$ yields \perp
- observation: empty clause can be derived, hence Φ' unsatisfiable
- consequently $\Phi \models Q$

Resolution: Discussion

- Resolution is a complete proof method to test formulas for unsatisfiability.
- ▶ In the worst case, resolution proofs can take exponential time.
- In practice, a strategy which determines the next resolution step is needed.
- In the following chapter, we discuss the DPLL algorithm, which is a combination of backtracking and resolution.

E3.3 Summary

Summary

- Reasoning: the formula ψ follows from the set of formulas Φ if all models of Φ are also models of ψ.
- Reasoning can be reduced to testing validity (with the deduction theorem).
- Testing validity can be reduced to testing unsatisfiability.
- Resolution is a refutation-complete proof method applicable to formulas in conjunctive normal form.
- \rightsquigarrow can be used to test if a set of clauses is unsatisfiable