Foundations of Artificial Intelligence E2. Propositional Logic: Equivalence and Normal Forms

Malte Helmert

University of Basel

April 22, 2024

Foundations of Artificial Intelligence

April 22, 2024 — E2. Propositional Logic: Equivalence and Normal Forms

E2.1 Equivalence

E2.2 Normal Forms

E2.3 Summary

Propositional Logic: Overview

Chapter overview: propositional logic

- ► E1. Syntax and Semantics
- ► E2. Equivalence and Normal Forms
- ► E3. Reasoning and Resolution
- ► E4. DPLL Algorithm
- ► E5. Local Search and Outlook

E2.1 Equivalence

Logical Equivalance

Definition (logically equivalent)

Formulas φ and ψ are called logically equivalent $(\varphi \equiv \psi)$ if for all interpretations $I: I \models \varphi$ iff $I \models \psi$.

German: logisch äquivalent

Equivalences

Logical Equivalences

Let φ , ψ , and η be formulas.

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi) \text{ and } (\varphi \vee \psi) \equiv (\psi \vee \varphi) \quad \text{(commutativity)}$$

$$((\varphi \wedge \psi) \wedge \eta) \equiv (\varphi \wedge (\psi \wedge \eta)) \text{ and }$$

$$((\varphi \vee \psi) \vee \eta) \equiv (\varphi \vee (\psi \vee \eta))$$
(associativity)

$$((\varphi \wedge \psi) \vee \eta) \equiv ((\varphi \vee \eta) \wedge (\psi \vee \eta)) \text{ and } ((\varphi \vee \psi) \wedge \eta) \equiv ((\varphi \wedge \eta) \vee (\psi \wedge \eta))$$
 (distributivity)

$$\neg (\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi) \text{ and }$$
$$\neg (\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$$
 (De Morgan)

$$(\varphi \to \psi) \equiv (\neg \varphi \lor \psi)$$
 ((\(\to \))-elimination)

Commutativity and associativity are often used implicitly \rightsquigarrow We write $(X_1 \land X_2 \land X_3 \land X_4)$ instead of $(X_1 \land (X_2 \land (X_3 \land X_4)))$

E2.2 Normal Forms

Normal Forms: Terminology

Definition (literal)

If $P \in \Sigma$, then the formulas P and $\neg P$ are called literals.

P is called positive literal, $\neg P$ is called negative literal.

The complementary literal to P is $\neg P$ and vice versa.

For a literal ℓ , the complementary literal to ℓ is denoted with $\bar{\ell}$.

German: Literal, positives/negatives/komplementäres Literal

Question: What is the difference between $\bar{\ell}$ and $\neg \ell$?

Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.

The empty clause (with 0 literals) is \perp .

Clauses consisting of exactly one literal are called unit clauses.

German: Klausel, leere Klausel, Einheitsklausel

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

German: Monom

Normal Forms

Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \ell_{i,j} \right)$$

A formula φ is in disjunctive normal form (DNF) if φ is a disjunction of 0 or more monomials:

$$\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \ell_{i,j} \right)$$

German: konjunktive Normalform, disjunktive Normalform

Normal Forms

For every propositional formula, there exists a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF with equivalences

- eliminate implications $(\varphi \to \psi) \equiv (\neg \varphi \lor \psi)$ $((\to)$ -elimination)
- - $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$ (De Morgan) $\neg \neg \varphi \equiv \varphi$ (double negation)
- **3** distribute \vee over \wedge $((\varphi \wedge \psi) \vee \eta) \equiv ((\varphi \vee \eta) \wedge (\psi \vee \eta))$ (distributivity)
- lacktriangle simplify constant subformulas (\top, \bot)

There are formulas φ for which every logically equivalent formula in CNF and DNF is exponentially longer than φ .

E2.3 Summary

Summary

- two formulas are logically equivalent if they have the same models
- different kinds of formulas:
 - atomic formulas and literals
 - clauses and monomials
 - conjunctive normal form (CNF) and disjunctive normal form (DNF)
- for every formula, there is a logically equivalent formula in CNF and a logically equivalent formula in DNF