Foundations of Artificial Intelligence
 D5. Constraint Satisfaction Problems: Path Consistency

Malte Helmert
University of Basel

April 15, 2024

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

- D1-D2. Introduction
- D3-D5. Basic Algorithms
- D3. Backtracking
- D4. Arc Consistency
- D5. Path Consistency
- D6-D7. Problem Structure

Beyond Arc Consistency

Beyond Arc Consistency: Path Consistency

idea of arc consistency:

- For every assignment to a variable u there must be a suitable assignment to every other variable v.
- If not: remove values of u for which no suitable "partner" assignment to v exists.
\rightsquigarrow tighter unary constraint on u
This idea can be extended to three variables (path consistency):
- For every joint assignment to variables u, v there must be a suitable assignment to every third variable w.
- If not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
\rightsquigarrow tighter binary constraint on u and v
German: Pfadkonsistenz

Beyond Arc Consistency: i-Consistency

general concept of i-consistency for $i \geq 2$:

- For every joint assignment to variables v_{1}, \ldots, v_{i-1} there must be a suitable assignment to every i-th variable v_{i}.
- If not: remove value tuples of v_{1}, \ldots, v_{i-1} for which no suitable "partner" assignment for v_{i} exists.
\rightsquigarrow tighter ($i-1$)-ary constraint on v_{1}, \ldots, v_{i-1}
- 2-consistency $=$ arc consistency
- 3-consistency $=$ path consistency (*)

We do not consider general i-consistency further
as larger values than $i=3$ are rarely used and we restrict ourselves to binary constraints in this course.
$\left(^{*}\right)$ usual definitions of 3 -consistency vs. path consistency differ when ternary constraints are allowed

Path Consistency

Path Consistency: Definition

Definition (path consistent)

Let $\mathcal{C}=\left\langle V\right.$, dom, $\left.\left(R_{u v}\right)\right\rangle$ be a constraint network.
(1) Two different variables $u, v \in V$ are path consistent with respect to a third variable $w \in V$ if for all values $d_{u} \in \operatorname{dom}(u), d_{v} \in \operatorname{dom}(v)$ with $\left\langle d_{u}, d_{v}\right\rangle \in R_{u v}$ there is a value $d_{w} \in \operatorname{dom}(w)$ with $\left\langle d_{u}, d_{w}\right\rangle \in R_{u w}$ and $\left\langle d_{v}, d_{w}\right\rangle \in R_{v w}$.
(2) The constraint network \mathcal{C} is path consistent if for all triples of different variables u, v, w, the variables u and v are path consistent with respect to w.

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
& R_{w z}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
& R_{y z}=\{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ?

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
R_{w z}= & \{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
R_{y z}= & \{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
R_{w y}= & \{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle, \\
& \langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle, \\
& \langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3,4\rangle, \\
& \langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle,\langle 4,4\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ?

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
R_{w z}= & \{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
R_{y z}= & \{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
R_{w y}= & \{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle, \\
& \langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle, \\
& \langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3,4\rangle, \\
& \langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle,\langle 4,4\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ? No!

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
& R_{w z}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
& R_{y z}=\{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
& R_{w y}=\{\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ?

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
& R_{w z}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
& R_{y z}=\{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
& R_{w y}=\{\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ? Yes!

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
& R_{w z}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
& R_{y z}=\{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
& R_{w y}=\{\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ? Yes!

Path Consistency on Running Example

Running Example

$$
\begin{aligned}
& R_{w z}=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,3\rangle\} \\
& R_{y z}=\{\langle 2,1\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 4,1\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
& R_{w y}=\{\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle\}
\end{aligned}
$$

Are w and y path consistent with respect to z ? Yes!

Path Consistency: Remarks

remarks:

- Even if the constraint $R_{u v}$ is trivial, path consistency can infer nontrivial constraints between u and v.
- name "path consistency": path $u \rightarrow w \rightarrow v$ leads to new information on $u \rightarrow v$

Path Consistency: Example

arc consistent, but not path consistent

Processing Variable Triples: revise-3

analogous to revise for arc consistency:

function revise-3(C, $u, v, w)$:

$\left\langle V, \operatorname{dom},\left(R_{u v}\right)\right\rangle:=\mathcal{C}$
for each $\left\langle d_{u}, d_{v}\right\rangle \in R_{u v}$:
if there is no $d_{w} \in \operatorname{dom}(w)$ with

$$
\begin{aligned}
& \left\langle d_{u}, d_{w}\right\rangle \in R_{u w} \text { and }\left\langle d_{v}, d_{w}\right\rangle \in R_{v w}: \\
& \quad \text { remove }\left\langle d_{u}, d_{v}\right\rangle \text { from } R_{u v}
\end{aligned}
$$

input: constraint network \mathcal{C} and three variables u, v, w of \mathcal{C} effect: u, v path consistent with respect to w.
All violating pairs are removed from $R_{u v}$.
time complexity: $O\left(k^{3}\right)$ where k is maximal domain size

Enforcing Path Consistency: PC-2

analogous to AC-3 for arc consistency:

function PC-2(C):

$\left\langle V, \operatorname{dom},\left(R_{u v}\right)\right\rangle:=\mathcal{C}$
queue := \emptyset
for each set of two variables $\{u, v\}$:
for each $w \in V \backslash\{u, v\}$:
insert $\langle u, v, w\rangle$ into queue
while queue $\neq \emptyset$:
remove any element $\langle u, v, w\rangle$ from queue revise-3(C, $u, v, w)$
if $R_{u v}$ changed in the call to revise-3:
for each $w^{\prime} \in V \backslash\{u, v\}$:
insert $\left\langle w^{\prime}, u, v\right\rangle$ into queue
insert $\left\langle w^{\prime}, v, u\right\rangle$ into queue

PC-2: Discussion

The comments for AC-3 hold analogously.

- PC-2 enforces path consistency
- proof idea: invariant of the while loop:
if $\langle u, v, w\rangle \notin$ queue, then u, v path consistent with respect to w
- time complexity $O\left(n^{3} k^{5}\right)$ for n variables and maximal domain size k (Why?)

Summary

Summary

- generalization of arc consistency (considers pairs of variables) to path consistency (considers triples of variables) and i-consistency (considers i-tuples of variables)
- arc consistency tightens unary constraints
- path consistency tightens binary constraints
- i-consistency tightens ($i-1$)-ary constraints
- higher levels of consistency more powerful but more expensive than arc consistency

