Foundations of Artificial Intelligence B15. State-Space Search: Properties of A*, Part II

Malte Helmert

University of Basel

March 27, 2024

State-Space Search: Overview

Chapter overview: state-space search

- B1–B3. Foundations
- B4–B8. Basic Algorithms
- B9–B15. Heuristic Algorithms
 - B9. Heuristics
 - B10. Analysis of Heuristics
 - B11. Best-first Graph Search
 - B12. Greedy Best-first Search, A*, Weighted A*
 - B13. IDA*
 - B14. Properties of A*, Part I
 - B15. Properties of A*, Part II

Introduction

Introduction

Optimality of A* without Reopening

We now study A* without reopening.

- For A* without reopening, admissibility and consistency together guarantee optimality.
- We prove this on the following slides, again beginning with a basic lemma.
- Either of the two properties on its own would not be sufficient for optimality. (How would one prove this?)

Reminder: A* without Reopening

reminder from Chapter B11/B12: A* without reopening

```
A* without Reopening
```

```
open := new MinHeap ordered by \langle f, h \rangle
if h(\text{init}()) < \infty:
     open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
     n := open.pop_min()
     if n.state ∉ closed:
           closed.insert(n)
           if is_goal(n.state):
                 return extract_path(n)
           for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                 if h(s') < \infty:
                       n' := \mathsf{make\_node}(n, a, s')
                       open.insert(n')
return unsolvable
```

Monotonicity Lemma

Monotonicity Lemma

Lemma (monotonicity of A* with consistent heuristics)

Consider A* with a consistent heuristic.

Then:

- If n' is a child node of n, then $f(n') \geq f(n)$.
- ② On all paths generated by A*, f values are non-decreasing.
- The sequence of f values of the nodes expanded by A* is non-decreasing.

German: Monotonielemma

Proof.

on 1.:

Let n' be a child node of n via action a.

Proof.

on 1.:

Let n' be a child node of n via action a.

Let s = n.state, s' = n'.state.

• by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')

Proof.

on 1.:

Let n' be a child node of n via action a.

- by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
- by definition of g: g(n') = g(n) + cost(a)

Proof.

on 1.:

Let n' be a child node of n via action a.

- by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
- by definition of g: g(n') = g(n) + cost(a)
- by consistency of h: $h(s) \leq cost(a) + h(s')$

Proof.

on 1.:

Let n' be a child node of n via action a.

- by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
- by definition of g: g(n') = g(n) + cost(a)
- by consistency of h: $h(s) \leq cost(a) + h(s')$
- $f(n) = g(n) + h(s) \le g(n) + cost(a) + h(s')$ = g(n') + h(s') = f(n')

Proof.

on 1.:

Let n' be a child node of n via action a.

Let s = n.state, s' = n'.state.

- by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
- by definition of g: g(n') = g(n) + cost(a)
- by consistency of h: $h(s) \leq cost(a) + h(s')$

$$f(n) = g(n) + h(s) \le g(n) + cost(a) + h(s')$$

= $g(n') + h(s') = f(n')$

on 2.: follows directly from 1.

Proof (continued).

on 3:

Let f_b be the minimal f value in open
 at the beginning of a while loop iteration in A*.
 Let n be the removed node with f(n) = f_b.

Proof (continued).

- Let f_b be the minimal f value in open
 at the beginning of a while loop iteration in A*.
 Let n be the removed node with f(n) = f_b.
- to show: at the end of the iteration the minimal f value in open is at least f_b.

Proof (continued).

- Let f_b be the minimal f value in open
 at the beginning of a while loop iteration in A*.
 Let n be the removed node with f(n) = f_b.
- to show: at the end of the iteration the minimal f value in open is at least f_b.
- We must consider the operations modifying open: open.pop_min and open.insert.

Proof (continued).

- Let f_b be the minimal f value in open
 at the beginning of a while loop iteration in A*.
 Let n be the removed node with f(n) = f_b.
- to show: at the end of the iteration the minimal f value in open is at least f_b.
- We must consider the operations modifying open: open.pop_min and open.insert.
- open.pop_min can never decrease the minimal f value in open (only potentially increase it).

Proof (continued).

- Let f_b be the minimal f value in open
 at the beginning of a while loop iteration in A*.
 Let n be the removed node with f(n) = f_b.
- to show: at the end of the iteration the minimal f value in open is at least f_b.
- We must consider the operations modifying open: open.pop_min and open.insert.
- open.pop_min can never decrease the minimal f value in open (only potentially increase it).
- The nodes n' added with *open*.insert are children of n and hence satisfy $f(n') \ge f(n) = f_b$ according to part 1.

Optimality of A* without Reopening

Theorem (optimality of A^* without reopening)

A* without reopening is optimal when using an admissible and consistent heuristic.

Proof.

From the monotonicity lemma, the sequence of f values of nodes removed from the open list is non-decreasing.

- \rightarrow If multiple nodes with the same state s are removed from the open list, then their g values are non-decreasing.
- → If we allowed reopening, it would never happen.
- → With consistent heuristics, A* without reopening behaves the same way as A* with reopening.

The result follows because A* with reopening and admissible heuristics is optimal.

Time Complexity of A*

Time Complexity of A*

What is the time complexity of A^* ?

- depends strongly on the quality of the heuristic
- an extreme case: h = 0 for all states
 - → A* identical to uniform cost search
- another extreme case: $h = h^*$ and cost(a) > 0for all actions a
 - → A* only expands nodes along an optimal solution
 - \rightarrow $O(\ell^*)$ expanded nodes, $O(\ell^*b)$ generated nodes, where
 - ℓ^* : length of the found optimal solution
 - b: branching factor

Time Complexity of A^* (2)

more precise analysis:

dependency of the runtime of A* on heuristic error

example:

- unit cost problems with
- constant branching factor and
- constant absolute error: $|h^*(s) h(s)| \le c$ for all $s \in S$

time complexity:

- if state space is a tree: time complexity of A* grows linearly in solution length (Pohl 1969; Gaschnig 1977)
- general search spaces: runtime of A* grows exponentially in solution length (Helmert & Röger 2008)

Overhead of Reopening

How does reopening affect runtime?

- For most practical state spaces and inconsistent admissible heuristics, the number of reopened nodes is negligible.
- exceptions exist: Martelli (1977) constructed state spaces with n states where exponentially many (in n) node reopenings occur in A^* . (→ exponentially worse than uniform cost search)

Time Complexity of A*

9	2	12	6	1	2	3	4
5	7	14	13	 5	6	7	8
3		1	11	9	10	11	12
15	4	10	8	13	14	15	

 h_1 : number of tiles in wrong cell (misplaced tiles)

 h_2 : sum of distances of tiles to their goal cell (Manhattan distance)

Practical Evaluation of A* (2)

- experiments with random initial states, generated by random walk from goal state
- ullet entries show median of number of generated nodes for 101 random walks of the same length N

	generated nodes						
N	BFS-Graph	A* with h ₁	A* with h ₂				
10	63	15	15				
20	1,052	28	27				
30	7,546	77	42				
40	72,768	227	64				
50	359,298	422	83				
60	> 1,000,000	7,100	307				
70	> 1,000,000	12,769	377				
80	> 1,000,000	62,583	849				
90	> 1,000,000	162,035	1,522				
100	> 1,000,000	690,497	4,964				

Summary

Summary

- A* without reopening using an admissible and consistent heuristic is optimal
- key property monotonicity lemma (with consistent heuristics):
 - f values never decrease along paths considered by A*
 - sequence of f values of expanded nodes is non-decreasing
- time complexity depends on heuristic and shape of state space
 - precise details complex and depend on many aspects
 - reopening increases runtime exponentially in degenerate cases, but usually negligible overhead
 - small improvements in heuristic values often lead to exponential improvements in runtime