Foundations of Artificial Intelligence B10. State-Space Search: Analysis of Heuristics

Malte Helmert

University of Basel

March 20, 2024

Foundations of Artificial Intelligence

March 20, 2024 — B10. State-Space Search: Analysis of Heuristics

B10.1 Properties of Heuristics

B10.2 Examples

B10.3 Connections

B10.4 Summary

State-Space Search: Overview

Chapter overview: state-space search

- ▶ B1–B3. Foundations
- ► B4–B8. Basic Algorithms
- ▶ B9–B15. Heuristic Algorithms
 - B9. Heuristics
 - ▶ B10. Analysis of Heuristics
 - ▶ B11. Best-first Graph Search
 - ▶ B12. Greedy Best-first Search, A*, Weighted A*
 - ► B13. IDA*
 - ▶ B14. Properties of A*, Part I
 - ▶ B15. Properties of A*, Part II

Reminder: Heuristics

Definition (heuristic)

Let S be a state space with states S.

A heuristic function or heuristic for ${\cal S}$ is a function

$$h: S \to \mathbb{R}_0^+ \cup \{\infty\},$$

mapping each state to a nonnegative number (or ∞).

B10.1 Properties of Heuristics

Perfect Heuristic

Definition (perfect heuristic)

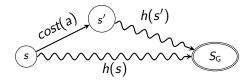
Let S be a state space with states S.

The perfect heuristic for S, written h^* , maps each state $s \in S$

- to the cost of an optimal solution for s, or
- ightharpoonup to ∞ if no solution for s exists.

German: perfekte Heuristik

Properties of Heuristics


Definition (safe, goal-aware, admissible, consistent)

Let S be a state space with states S.

A heuristic h for S is called

- ▶ safe if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$
- **p** goal-aware if h(s) = 0 for all goal states s
- ▶ admissible if $h(s) \le h^*(s)$ for all states $s \in S$
- **consistent** if $h(s) \leq cost(a) + h(s')$ for all transitions $s \stackrel{a}{\rightarrow} s'$

German: sicher, zielerkennend, zulässig, konsistent

B10.2 Examples

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Route Planning in Romania

straight-line distance:

- safe
- goal-aware
- admissible
- consistent

Why?

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Blocks World

misplaced blocks:

- ► safe?
- ▶ goal-aware?
- admissible?
- consistent?

Properties of Heuristics: Examples

Which of our three example heuristics have which properties?

Missionaries and Cannibals

people on wrong river bank:

- ► safe?
- goal-aware?
- admissible?
- consistent?

B10. State-Space Search: Analysis of Heuristics Connections

B10.3 Connections

Properties of Heuristics: Connections (1)

Theorem (admissible \Longrightarrow safe + goal-aware)

Let h be an admissible heuristic.

Then h is safe and goal-aware.

Why?

Properties of Heuristics: Connections (2)

Theorem (goal-aware + consistent \Longrightarrow admissible)

Let h be a goal-aware and consistent heuristic.

Then h is admissible.

Why?

Showing All Four Properties

How can one show most easily that a heuristic has all four properties?

B10. State-Space Search: Analysis of Heuristics Summary

B10.4 Summary

Summary

- perfect heuristic h*: true cost to the goal
- important properties: safe, goal-aware, admissible, consistent
- connections between these properties
 - ▶ admissible ⇒ safe and goal-aware
 - ▶ goal-aware and consistent ⇒ admissible