Foundations of Artificial Intelligence B9. State-Space Search: Heuristics

Malte Helmert

University of Basel

March 18, 2024

Summary 00

State-Space Search: Overview

Chapter overview: state-space search

- B1–B3. Foundations
- B4–B8. Basic Algorithms
- B9-B15. Heuristic Algorithms
 - B9. Heuristics
 - B10. Analysis of Heuristics
 - B11. Best-first Graph Search
 - B12. Greedy Best-first Search, A*, Weighted A*
 - B13. IDA*
 - B14. Properties of A*, Part I
 - B15. Properties of A*, Part II

Introduction

Summary 00

Informed Search Algorithms

search algorithms considered so far:

- uninformed ("blind"): use no information besides formal definition to solve a problem
- scale poorly: prohibitive time (and space) requirements for seemingly simple problems (time complexity usually O(b^d))

Examples 00000

Informed Search Algorithms

search algorithms considered so far:

- uninformed ("blind"): use no information besides formal definition to solve a problem
- scale poorly: prohibitive time (and space) requirements for seemingly simple problems (time complexity usually O(b^d))

example: b = 13; 10^5 nodes/second

d	nodes	time
4	30 940	0.3 s
6	$5.2\cdot 10^6$	52 s
8	$8.8\cdot10^8$	147 min
10	10 ¹¹	17 days
12	10 ¹³	8 years
14	10 ¹⁵	1 352 years
16	10 ¹⁷	$2.2\cdot 10^5$ years
18	10 ²⁰	$38\cdot 10^6$ years

Examples 00000

Informed Search Algorithms

Rubik's cube:

- branching factor: pprox 13
- typical solution length: 18

example: b = 13; 10^5 nodes/second

d	nodes	time
4	30 940	0.3 s
6	$5.2\cdot 10^6$	52 s
8	$8.8\cdot 10^8$	147 min
10	10 ¹¹	17 days
12	10 ¹³	8 years
14	10 ¹⁵	1 352 years
16	10 ¹⁷	$2.2\cdot 10^5$ years
18	10 ²⁰	$38\cdot 10^6$ years

Richard Korf, Finding Optimal Solutions to Rubik's Cube Using Pattern Databases (AAAI, 1997)

Examples 00000 Summary

Informed Search Algorithms

Rubik's cube:

search algorithms considered now:

- idea: try to find (problem-specific) criteria to distinguish good and bad states
- heuristic ("informed") search algorithms prefer good states

- branching factor: pprox 13
- typical solution length: 18

Examples 00000 Summary 00

Heuristics

Heuristics

Definition (heuristic)

Let S be a state space with states S. A heuristic function or heuristic for S is a function

$$h: S \to \mathbb{R}^+_0 \cup \{\infty\},\$$

mapping each state to a nonnegative number (or ∞).

Heuristics: Intuition

- idea: h(s) estimates distance (= cost of cheapest path)
 from s to closest goal state
 - heuristics can be arbitrary functions
 - intuition:
 - the closer h is to true goal distance, the more efficient the search using h
 - the better h separates states that are close to the goal from states that are far, the more efficient the search using h

Heuristics 000●0 Examples 00000

Why "Heuristic"?

What does "heuristic" mean?

- from ancient Greek <code>ἑυρισκω</code> (= I find)
- same origin as ἑυρηκα!

Why "Heuristic"?

What does "heuristic" mean?

- from ancient Greek έυρισκω (= I find)
- same origin as ἑυρηκα!
- popularized by George Pólya: How to Solve It (1945)
- in computer science often used for: rule of thumb, inexact algorithm
- in state-space search technical term for goal distance estimator

Representation of Heuristics

In our black box model, heuristics are an additional element of the state space interface:

State Spaces as Black Boxes (Extended)		
• init()		
• is_goal(s)		
• $succ(s)$		
• $cost(a)$		
• h(s): heuristic value for state s		
result: nonnegative integer or ∞		

Examples •0000

Summary 00

Examples

Examples

Summary 00

Bounded Inc-and-Square

bounded inc-and-square:

possible heuristics:

ŀ

$$p_1(s) = egin{cases} 0 & ext{if } s = 7 \ (16-s) ext{ mod } 10 & ext{otherwise} \end{cases}$$

 \rightsquigarrow number of inc actions to goal

How accurate is this heuristic?

Introd	

Examples

Summary

Bounded Inc-and-Square

bounded inc-and-square:

possible heuristics:

How accurate is this heuristic?

Examples

Summary 00

Example: Blocks World

possible heuristic:

count blocks x that currently lie on y and must lie on $z \neq y$ in the goal (including case where y or z is the table)

Examples

Summary 00

Example: Blocks World

possible heuristic:

count blocks x that currently lie on y and must lie on $z \neq y$ in the goal (including case where y or z is the table)

How accurate is this heuristic?

Summary

Example: Route Planning in Romania

possible heuristic: straight-line distance to Bucharest

Summary

Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

- Six people must cross a river.
- Their rowing boat can carry one or two people across the river at a time (it is too small for three).
- Three people are missionaries, three are cannibals.
- Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

Summary

Example: Missionaries and Cannibals

Setting: Missionaries and Cannibals

- Six people must cross a river.
- Their rowing boat can carry one or two people across the river at a time (it is too small for three).
- Three people are missionaries, three are cannibals.
- Missionaries may never stay with a majority of cannibals.

possible heuristic: number of people on the wrong river bank

→→ with our formulation of states as triples
$$(m, c, b)$$
:
 $h((m, c, b)) = m + c$

Summary

- heuristics estimate distance of a state to the goal
- can be used to focus search on promising states
- \rightsquigarrow soon: search algorithms that use heuristics