Foundations of Artificial Intelligence
 B6. State-Space Search: Breadth-first Search

Malte Helmert
University of Basel

March 13, 2024

Foundations of Artificial Intelligence
 March 13, 2024 - B6. State-Space Search: Breadth-first Search

B6.1 Blind Search
B6.2 Breadth-first Search: Introduction
B6.3 BFS-Tree
B6.4 BFS-Graph
B6.5 Properties of Breadth-first Search
B6.6 Summary

State-Space Search: Overview

Chapter overview: state-space search

- B1-B3. Foundations
- B4-B8. Basic Algorithms
- B4. Data Structures for Search Algorithms
- B5. Tree Search and Graph Search
- B6. Breadth-first Search
- B7. Uniform Cost Search
- B8. Depth-first Search and Iterative Deepening
- B9-B15. Heuristic Algorithms

B6.1 Blind Search

Blind Search

In Chapters B6-B8 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information about state spaces apart from the black box interface. They are also called uninformed search algorithms.
contrast: heuristic search algorithms (Chapters B9-B14)

Blind Search Algorithms: Examples

examples of blind search algorithms:

- breadth-first search (\rightsquigarrow this chapter)
- uniform cost search (\rightsquigarrow Chapter B7)
- depth-first search (\rightsquigarrow Chapter B8)
- depth-limited search (\rightsquigarrow Chapter B8)
- iterative deepening search (\rightsquigarrow Chapter B8)

B6.2 Breadth-first Search: Introduction

Running Example: Reminder

bounded inc-and-square:

- $S=\{0,1, \ldots, 9\}$
- $A=\{i n c, s q r\}$
- $\operatorname{cost}(i n c)=\operatorname{cost}(s q r)=1$
- T s.t. for $i=0, \ldots, 9$:
$-\langle i, i n c,(i+1) \bmod 10\rangle \in T$
- $\left\langle i\right.$, sqr, $\left.i^{2} \bmod 10\right\rangle \in T$
- $s_{1}=1$
- $S_{G}=\{6,7\}$

Idea

breadth-first search:

- expand nodes in order of generation (FIFO)
\rightsquigarrow open list is linked list or deque
- we start with an example using graph search

German: Breitensuche

Example: Generic Graph Search with FIFO Expansion

next
open: $\left[\begin{array}{l}\downarrow \\ 1\end{array}\right]$
closed: $\}$

Example: Generic Graph Search with FIFO Expansion

next open: $\left[\begin{array}{l}\downarrow \\ 2\end{array}\right]$ closed: $\{1\}$

Example: Generic Graph Search with FIFO Expansion

 closed: $\{1,2\}$

Example: Generic Graph Search with FIFO Expansion

Example: Generic Graph Search with FIFO Expansion

$$
\begin{array}{ll}
& \left.\begin{array}{l}
\text { next } \\
\text { open: } \\
\text { [④) (4) (9) }
\end{array}\right] \\
\text { closed: } & \{1,2,3\}
\end{array}
$$

Example: Generic Graph Search with FIFO Expansion

$$
\begin{aligned}
& \text { open: } \left.\begin{array}{ll}
\text { next } \\
\text { closed: } & \{1,2,3,4\} \\
\hline 4) & \{1,2]
\end{array}\right]
\end{aligned}
$$

Example: Generic Graph Search with FIFO Expansion

$\begin{array}{ll} \\ \text { open: } \\ \text { next } \\ \text { closed: } & {\left[\begin{array}{l}\downarrow \\ 9\end{array}\right.} \\ \text { (5) (6) }]\end{array}$

Example: Generic Graph Search with FIFO Expansion

Example: Generic Graph Search with FIFO Expansion

Example: Generic Graph Search with FIFO Expansion

Observations from Example

breadth-first search behaviour:

- state space is searched layer by layer
\rightsquigarrow shallowest goal node is always found first

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

- without duplicate elimination (as a tree search)
\rightsquigarrow BFS-Tree
- or with duplicate elimination (as a graph search) \rightsquigarrow BFS-Graph
(BFS = breadth-first search).
\rightsquigarrow We consider both variants.

B6.3 BFS-Tree

Reminder: Generic Tree Search Algorithm

reminder from Chapter B5:

Generic Tree Search
open := new OpenList
open.insert(make_root_node())
while not open.is_empty():

$$
\begin{aligned}
& n:=\text { open.pop }() \\
& \text { if is_goal }(n . \text { state }) \text { : } \\
& \quad \text { return extract_path }(n) \\
& \text { for each }\left\langle a, s^{\prime}\right\rangle \in \operatorname{succ}(n . \text { state }): \\
& n^{\prime}:=\operatorname{make_ node}\left(n, a, s^{\prime}\right) \\
& \quad \text { open.insert }\left(n^{\prime}\right)
\end{aligned}
$$

return unsolvable

BFS-Tree (1st Attempt)

Running Example: BFS-Tree (1st Attempt)

Opportunities for Improvement

- In a BFS, the first generated goal node is always the first expanded goal node. (Why?)
\rightsquigarrow It is more efficient to perform the goal test upon generating a node (rather than upon expanding it).
\rightsquigarrow How much effort does this save?

BFS-Tree without Early Goal Tests

BFS-Tree with Early Goal Tests

BFS-Tree (2nd Attempt)

BFS-Tree (2nd Attempt): Discussion

Where is the bug?

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

```
BFS-Tree
if is_goal(init()):
    return <\rangle
open:= new Deque
open.push_back(make_root_node())
while not open.is_empty():
    n:=open.pop_front()
    for each }\langlea,\mp@subsup{s}{}{\prime}\rangle\in\operatorname{succ}(n.state)
        n':= make_node( }n,a,\mp@subsup{s}{}{\prime}
        if is_goal(s'):
                return extract_path( }\mp@subsup{n}{}{\prime}
    open.push_back( }\mp@subsup{n}{}{\prime}\mathrm{ )
return unsolvable
```


B6.4 BFS-Graph

Reminder: Generic Graph Search Algorithm

```
reminder from Chapter B5:
```

```
Generic Graph Search
open := new OpenList
open.insert(make_root_node())
closed:= new ClosedList
while not open.is_empty():
    n:= open.pop()
    if closed.lookup(n.state) = none:
        closed.insert(n)
        if is_goal(n.state):
        return extract_path(n)
        for each }\langlea,\mp@subsup{s}{}{\prime}\rangle\in\operatorname{succ}(n.state)
        n':= make_node( }n,a,\mp@subsup{s}{}{\prime}
        open.insert( }\mp@subsup{n}{}{\prime}\mathrm{ )
```

return unsolvable

Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

- similar adaptations to BFS-Tree
(deque as open list, early goal tests)
- as closed list does not need to manage node information, a set data structure suffices
- for the same reasons why early goal tests are a good idea, we should perform duplicate tests against the closed list and updates of the closed lists as early as possible

BFS-Graph (Breadth-First Search with Duplicate Elim.)

```
BFS-Graph
if is_goal(init()):
    return <>
open:= new Deque
open.push_back(make_root_node())
closed:= new HashSet
closed.insert(init())
while not open.is_empty():
    n:=open.pop_front()
    for each }\langlea,\mp@subsup{s}{}{\prime}\rangle\in\operatorname{succ}(n.state)
        n':= make_node( }n,a,\mp@subsup{s}{}{\prime}
        if is_goal(s}\mp@subsup{s}{}{\prime})
        return extract_path( }\mp@subsup{n}{}{\prime
        if s}\mp@subsup{s}{}{\prime}\not\in\mathrm{ closed:
        closed.insert(s')
        open.push_back( }\mp@subsup{n}{}{\prime}
return unsolvable
```


BFS-Graph: Example

BFS-Graph: Example

BFS-Graph: Example

open: $\left.\begin{array}{l}\text { next } \\ \text { closed: } \\ \{1,2,3,4\}\end{array}\right]$

BFS-Graph: Example

BFS-Graph: Example

closed: $\{1,2,3,4,5,6,9\}$

B6.5 Properties of Breadth-first Search

Properties of Breadth-first Search

Properties of Breadth-first Search:
BFS-Tree is semi-complete, but not complete. (Why?)

- BFS-Graph is complete. (Why?)
- BFS (both variants) is optimal
if all actions have the same cost (Why?), but not in general (Why not?).
- complexity: next slides

Breadth-first Search: Complexity

The following result applies to both BFS variants:
Theorem (time complexity of breadth-first search)
Let b be the branching factor and d be the minimal solution length of the given state space. Let $b \geq 2$.

Then the time complexity of breadth-first search is

$$
1+b+b^{2}+b^{3}+\cdots+b^{d}=O\left(b^{d}\right)
$$

Reminder: we measure time complexity in generated nodes.
It follows that the space complexity of both BFS variants also is $O\left(b^{d}\right)$ (if $b \geq 2$). (Why?)

Breadth-first Search: Example of Complexity

example: $b=13 ; 100000$ nodes/second; 32 bytes/node

Rubik's cube:

- branching factor: ≈ 13
- typical solution length: 18

d	nodes	time	memory
4	30940	0.3 s	966 KiB
6	$5.2 \cdot 10^{6}$	52 s	159 MiB
8	$8.8 \cdot 10^{8}$	147 min	26 GiB
10	10^{11}	17 days	4.3 TiB
12	10^{13}	8 years	734 TiB
14	10^{15}	1352 years	121 PiB
16	10^{17}	$2.2 \cdot 10^{5}$ years	20 EiB
18	10^{20}	$38 \cdot 10^{6}$ years	3.3 ZiB

BFS-Tree or BFS-Graph?

Which is better, BFS-Tree or BFS-Graph?
advantages of BFS-Graph:

- complete
- much (!) more efficient if there are many duplicates
advantages of BFS-Tree:
- simpler
- less overhead (time/space) if there are few duplicates

Conclusion

BFS-Graph is usually preferable, unless we know that there is a negligible number of duplicates in the given state space.

B6.6 Summary

Summary

- blind search algorithm: use no information except black box interface of state space
- breadth-first search: expand nodes in order of generation
- search state space layer by layer
- can be tree search or graph search
- complexity $O\left(b^{d}\right)$ with branching factor b, minimal solution length d (if $b \geq 2$)
- complete as a graph search; semi-complete as a tree search
- optimal with uniform action costs

