Foundations of Artificial Intelligence B1. State-Space Search: State Spaces

Malte Helmert

University of Basel

March 4, 2024

Foundations of Artificial Intelligence March 4, 2024 — B1. State-Space Search: State Spaces

B1.1 State-Space Search Problems

B1.2 Formalization

B1.3 State-Space Search

B1.4 Summary

State-Space Search: Overview

Chapter overview: state-space search

- ▶ B1–B3. Foundations
 - ▶ B1. State Spaces
 - ▶ B2. Representation of State Spaces
 - B3. Examples of State Spaces
- ▶ B4-B8. Basic Algorithms
- ▶ B9–B15. Heuristic Algorithms

B1.1 State-Space Search Problems

State-Space Search Applications

Mario Al competition

route planning

multi-agent path finding

scheduling

software/hardware verification

NPC behaviour

Classical Assumptions

"classical" assumptions considered in this part of the course:

- no other agents in the environment (single-agent)
- always knows state of the world (fully observable)
- state only changed by the agent (static)
- finite number of states/actions (in particular discrete)
- ▶ actions have deterministic effect on the state

Classification

classification:

State-Space Search environment:

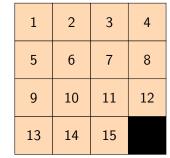
- static vs. dynamic
- ▶ deterministic vs. non-deterministic vs. stochastic
- fully vs. partially vs. not observable
- discrete vs. continuous
- ▶ single-agent vs. multi-agent

problem solving method:

▶ problem-specific vs. general vs. learning

Informal Description

State-space search problems are among the "simplest" and most important classes of AI problems.


objective of the agent:

- apply a sequence of actions
- ► that reaches a goal state
- from a given initial state

performance measure: minimize total action cost

Motivating Example: 15-Puzzle

9	2	12	6
5	7	14	13
3		1	11
15	4	10	8

B1. State-Space Search: State Spaces Formalization

B1.2 Formalization

State Spaces

Definition (state space)

A state space or transition system is a 6-tuple $S = \langle S, A, cost, T, s_I, S_G \rangle$ with

- ► finite set of states *S*
- ► finite set of actions *A*
- ▶ action costs $cost : A \rightarrow \mathbb{R}_0^+$
- ▶ transition relation $T \subseteq S \times A \times S$ that is deterministic in $\langle s, a \rangle$ (see next slide)
- ▶ initial state $s_l \in S$
- ▶ set of goal states $S_G \subseteq S$

German: Zustandsraum, Transitionssystem, Zustände, Aktionen, Aktionskosten, Transitions-/Übergangsrelation, deterministisch, Anfangszustand, Zielzustände

State Spaces: Terminology & Notation

Definition (transition, deterministic)

Let $S = \langle S, A, cost, T, s_I, S_G \rangle$ be a state space.

The triples $\langle s, a, s' \rangle \in T$ are called (state) transitions.

We say S has the transition $\langle s, a, s' \rangle$ if $\langle s, a, s' \rangle \in T$.

We write this as $s \xrightarrow{a} s'$, or $s \rightarrow s'$ when a does not matter.

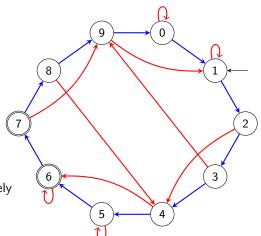
Transitions are deterministic in $\langle s, a \rangle$: it is forbidden to have both $s \stackrel{a}{\to} s_1$ and $s \stackrel{a}{\to} s_2$ with $s_1 \neq s_2$.

State Space: Running Example

Consider the bounded inc-and-square search problem.

informal description:

- ▶ find a sequence of
 - ► increment-mod10 (inc) and
 - square-mod10 (sqr) actions
- on the natural numbers from 0 to
- that reaches the number 6 or 7
- starting from the number 1
- > assuming each action costs 1.


formal model:

- $S = \{0, 1, \dots, 9\}$
- $ightharpoonup A = \{inc, sqr\}$
- ightharpoonup cost(inc) = cost(sqr) = 1
- ightharpoonup T s.t. for i = 0, ..., 9:
 - $i = 0, \dots, 9.$
 - $\langle i, inc, (i+1) \mod 10 \rangle \in T$ $\langle i, sgr, i^2 \mod 10 \rangle \in T$
 - $ightharpoonup s_1 = 1$
 - $S_G = \{6, 7\}$

Graph Interpretation

state spaces are often depicted as directed, labeled graphs

- states: graph vertices
- transitions: labeled arcs (here: colors instead of labels)
- initial state: incoming arrow
- ▶ goal states: double circles
- actions: the arc labels
- action costs: described separately (or implicitly = 1)

State Spaces: More Terminology (1)

We use common terminology from graph theory.

Definition (predecessor, successor, applicable action)

Let $S = \langle S, A, cost, T, s_I, S_G \rangle$ be a state space.

Let $s, s' \in S$ be states with $s \to s'$.

- \triangleright s is a predecessor of s'
- \triangleright s' is a successor of s

If $s \stackrel{a}{\rightarrow} s'$, then action a is applicable in s.

German: Vorgänger, Nachfolger, anwendbar

State Spaces: More Terminology (2)

Definition (path)

Let $S = \langle S, A, cost, T, s_I, S_G \rangle$ be a state space.

Let $s_0, \ldots, s_n \in S$ be states and $a_1, \ldots, a_n \in A$ be actions such that $s_0 \xrightarrow{a_1} s_1, \ldots, s_{(n-1)} \xrightarrow{a_n} s_n$.

- $ightharpoonup \pi = \langle a_1, \dots, a_n \rangle$ is a path from s_0 to s_n
- length of π : $|\pi| = n$
- ightharpoonup cost of π : $cost(\pi) = \sum_{i=1}^{n} cost(a_i)$

German: Pfad, Länge, Kosten

- paths may have length 0
- ▶ sometimes "path" is used for state sequence $\langle s_0, \ldots, s_n \rangle$ or sequence $\langle s_0, a_1, s_1, \ldots, s_{(n-1)}, a_n, s_n \rangle$

State Spaces: More Terminology (3)

More terminology:

Definition (reachable, solution, optimal)

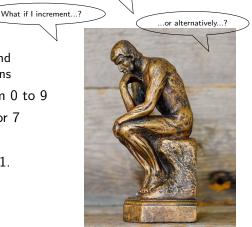
Let $S = \langle S, A, cost, T, s_I, S_G \rangle$ be a state space.

- state s is reachable if a path from s₁ to s exists
- ▶ paths from $s \in S$ to some state $s_* \in S_G$ are solutions for/from s
- ightharpoonup solutions for s_{l} are called solutions for S
- optimal solutions (for s) have minimal costs among all solutions (for s)

German: erreichbar, Lösung für/von s, optimale Lösung

B1.3 State-Space Search

Solving Search Problems


Consider again the running example.

How do you solve this?

...and then square...?

informal description:

- find a sequence of
 - ► increment-mod10 (inc) and
 - square-mod10 (sqr) actions
- on the natural numbers from 0 to 9
- that reaches the number 6 or 7
- starting from the number 1

assuming each action costs 1.

M. Helmert (University of Basel)

State-Space Search

State-Space Search

State-space search is the algorithmic problem of finding solutions in state spaces or proving that no solution exists.

In optimal state-space search, only optimal solutions may be returned.

German: Zustandsraumsuche, optimale Zustandsraumsuche

Learning Objectives for State-Space Search

Learning Objectives for the Topic of State-Space Search

- understanding state-space search:
 What is the problem and how can we formalize it?
- evaluate search algorithms: completeness, optimality, time/space complexity
- get to know search algorithms: uninformed vs. informed; tree and graph search
- evaluate heuristics for search algorithms: goal-awareness, safety, admissibility, consistency
- efficient implementation of search algorithms
- experimental evaluation of search algorithms
- design and comparison of heuristics for search algorithms

B1. State-Space Search: State Spaces Summary

B1.4 Summary

Summary

- state-space search problems: find action sequence leading from initial state to a goal state
- performance measure: sum of action costs
- formalization via state spaces:
 - states, actions, action costs, transitions, initial state, goal states
- terminology for transitions, paths, solutions
- definition of (optimal) state-space search