Foundations of Artificial Intelligence A3. Introduction: AI Past and Present

Malte Helmert

University of Basel

February 28, 2024

Introduction: Overview

Chapter overview: introduction

- A1. Organizational Matters
- A2. What is Artificial Intelligence?
- A3. AI Past and Present
- A4. Rational Agents
- A5. Environments and Problem Solving Methods

Where are We Today?

Summary 00

Precursors (Until ca. 1943)

- Aristotle (384–322 BC)
- Leibniz (1646–1716)
- Hilbert program (1920s)

Where are We Today?

Summary 00

Gestation (1943–1956)

А	Short	History	of	AI
0	0000	000 ⁻		

Where are We Today? 0000000 Summary 00

Gestation (1943-1956)

Artificial Neurons

- first computational model of artificial neuron
- network of neurons can compute any computable function
- basis of deep learning

Where are We Today? 0000000 Summary 00

Gestation (1943–1956)

А	Short	History	of	AI
0	0000	000 ⁻		

Where are We Today?

Summary

Gestation (1943-1956)

	N N	,					(
Artificial Neurons			John MacCarthy	Arvin Minsky	h Ray Solomonoff	Alan Newell	
Dartmou	th		Herbert Simon	Arthur Samuel Oilver Selfridge	Antipatient Antipatient	Trenchard More	
1950	1960	1970	1980	1990	200	00	
 Turing Test Dartmouth workshop (1956) ambitious proposal: "An attempt will be made to find how to make machines use language, [] solve kinds of problems now reserved for humans, and improve themselves." no important breakthrough J. McCarthy coins term artificial intelligence 							
		•	U	1.5.1.10			

Where are We Today?

Summary 00

Where are We Today?

Summary 00

Where are We Today?

Summary 00

Where are We Today?

Summary 00

Where are We Today?

Summary 00

A Dose of Reality (1966–1973)

Expert Systems (1969–1986)

Expert Systems (1969–1986)

Expert Systems (1969–1986)

Coming of Age (1990s and 2000s)

Broad Visibility in Society (Since 2010s)

Where are We Today?

AI Approaching Maturity

Russell & Norvig (1995)

Gentle revolutions have occurred in robotics, computer vision, machine learning, and knowledge representation. A better understanding of the problems and their complexity properties, combined with increased mathematical sophistication, has led to workable research agendas and robust methods.

Where are We Today?

Summary 00

Where are We Today?

many coexisting paradigms

- reactive vs. deliberative
- data-driven vs. model-driven
- often hybrid approaches
- many methods, often borrowing from other research areas
 - logic, decision theory, statistics, ...
- different approaches
 - theoretical
 - algorithmic/experimental
 - application-oriented

Focus on Algorithms and Experiments

Many AI problems are inherently difficult (NP-hard), but strong search techniques and heuristics often solve large problem instances regardless:

- satisfiability in propositional logic
 - 10,000 propositional variables or more via conflict-directed clause learning
- constraint solvers
 - good scalability via constraint propagation and automatic exploitation of problem structure
- action planning
 - 10¹⁰⁰ search states and more by search using automatically inferred heuristics

What Can AI Do Today?

https://kahoot.it/

Where are We Today?

Summary 00

What Can AI Do Today? - Videos, Articles and Als

What Can AI Do Today?

results of our classroom poll:

- $\checkmark\,$ successfully complete an off-road car race
- \checkmark beat a world champion table tennis player
- $\checkmark\,$ play guitar in a robot band
- $\checkmark\,$ do and fold the laundry
- 🗡 drive safely in downtown Basel
- 🗡 win a football match against a human team
- $\checkmark\,$ dance synchronously in a group of robots
- \checkmark write code on the level of a CS student
- \checkmark beat a world champion Chess, Go or Poker player
- ✓ create inspiring quotes
- ✓ compose music
- $\checkmark\,$ engage in a scientific conversation

Summary

- 1950s/1960s: beginnings of AI; early enthusiasm
- 1970s: micro worlds and knowledge-based systems
- 1980s: gold rush of expert systems followed by "AI winter"
- 1990s/2000s: Al comes of age; research becomes more rigorous and mathematical; mature methods
- 2010s: Al systems enter mainstream