Foundations of Artificial Intelligence A1. Organizational Matters

Malte Helmert

University of Basel

February 26, 2024

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

February 26, 2024 1 / 26

Foundations of Artificial Intelligence February 26, 2024 — A1. Organizational Matters

A1.1 People

A1.2 Format

A1.3 Assessment

A1.4 Tools

A1.5 About this Course

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Introduction: Overview

Chapter overview: introduction

- A1. Organizational Matters
- A2. What is Artificial Intelligence?
- ► A3. AI Past and Present
- A4. Rational Agents
- A5. Environments and Problem Solving Methods

A1.1 People

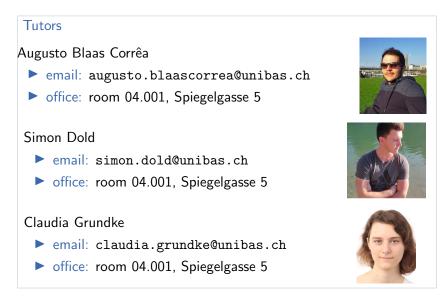
Teaching Staff: Lecturer

Lecturer

Prof. Dr. Malte Helmert

email: malte.helmert@unibas.ch

▶ office: room 06.004, Spiegelgasse 1


Teaching Staff: Assistant

Assistant

- Dr. Tanja Schindler
 - email: tanja.schindler@unibas.ch
 - ▶ office: room 04.005, Spiegelgasse 1

Teaching Staff: Tutors

Students

target audience:

- ▶ Bachelor Computer Science, ~3rd year
- ▶ Bachelor Computational Sciences, ~3rd year
- other students welcome

prerequisites:

- algorithms and data structures
- basic mathematical concepts (formal proofs; sets, functions, relations, graphs)
- complexity theory
- programming skills (mainly for exercises)

A1.2 Format

Structure Overview

Foundations of AI week structure:

- Monday: release of exercise sheet
- Monday and Wednesday: lectures
- Wednesday: exercise session
- Sunday: exercise sheet due
- exceptions due to holidays

Time & Place

Lectures

- Mon 16:15–18:00 in Biozentrum, lecture hall U1.141
- ▶ Wed 14:15–16:00 in Biozentrum, lecture hall U1.141

Exercise Sessions

- Wed 16:15–18:00 in Biozentrum, SR U1.193 (English)
- Wed 16:15–18:00 in Biozentrum, SR U1.195 (German)

first exercise session: February 28 (this week)

Exercises

exercise sheets (homework assignments):

- mostly theoretical exercises
- occasional programming exercises

exercise sessions:

- initial part:
 - discuss common mistakes in previous exercise sheet
 - answer questions on previous exercise sheet

main part:

- we support you solving the current exercise sheet
- we answer your questions
- we assist you comprehend the course content

Theoretical Exercises

theoretical exercises:

- exercises on ADAM every Monday
- covers material of that week (Monday and Wednesday)
- due Sunday of the same week (23:59) via ADAM
- solved in groups of at most two (2 = 2)
- support in exercise session of current week
- discussed in exercise session of following week

Programming Exercises

programming exercises (project):

- project with 3–4 parts over the duration of the semester
- integrated into the exercise sheets (no special treatment)
- solved in groups of at most two (2 < 3)</p>
- implemented in Java; need working Linux system for some
- solutions that obviously do not work: 0 marks

A1.3 Assessment

Course Material

course material that is relevant for the exam:

- slides
- content of lecture
- exercise sheets

additional (optional) course material:

- textbook
- bonus material

Textbook

Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig (4th edition, Global edition)

 covers large parts of the course (and much more), but not everything

Exam

written exam on Wednesday, July 3 (to be confirmed)

- 14:00-16:00
- 105 minutes for working on the exam
- location to be announced
- 8 ECTS credits
- admission to exam: 50% of the exercise marks
- class participation not required but highly recommended
- no repeat exam

Plagiarism

Plagiarism (Wikipedia)

Plagiarism is the "wrongful appropriation" and "stealing and publication" of another author's "language, thoughts, ideas, or expressions" and the representation of them as one's own original work.

consequences:

- 0 marks for the exercise sheet (first time)
- exclusion from exam (second time)

if in doubt: check with us what is (and isn't) OK before submitting exercises too difficult? Join the exercise session!

A1.4 Tools

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

February 26, 2024 19 / 26

Course Homepage and Enrolment

Course Homepage

https://dmi.unibas.ch/en/studies/computer-science/ courses-in-spring-semester-2024/ lecture-foundations-of-artificial-intelligence/

- course information
- slides
- bonus material (not relevant for the exam)
- link to ADAM workspace

enrolment:

https://services.unibas.ch/

Communication Channels

Communication Channels

- lectures and exercise sessions
- ADAM workspace (linked from course homepage)
 - link to Discord server
 - exercise sheets and submission
 - bonus material that we cannot share publicly
- Discord server (linked from ADAM workspace)
 - opportunity for Q&A and informal interactions
- contact us by email
- meet us in person (by arrangement)
- meet us on Zoom (by arrangement)

A1.5 About this Course

Classical AI Curriculum

"Classical" AI Curriculum

- 1. introduction
- 2. rational agents
- 3. uninformed search
- 4. informed search
- 5. constraint satisfaction
- 6. board games
- 7. propositional logic
- 8. predicate logic

- 9. modeling with logic
- 10. classical planning
- 11. probabilistic reasoning
- 12. decisions under uncertainty
- 13. acting under uncertainty
- 14. machine learning
- 15. deep learning
- 16. reinforcement learning
- \rightsquigarrow wide coverage, but somewhat superficial

Our AI Curriculum

Our AI Curriculum

- 1. introduction
- 2. rational agents
- 3. uninformed search
- 4. informed search
- 5. constraint satisfaction
- 6. board games
- 7. propositional logic
- 8. predicate logic

- 9. modeling with logic
- 10. classical planning
- 11. probabilistic reasoning
- 12. decisions under uncertainty
- 13. acting under uncertainty
- 14. machine learning
- 15. deep learning
- 16. reinforcement learning

Topic Selection

guidelines for topic selection:

- fewer topics, more depth
- more emphasis on programming projects
- connections between topics
- avoiding overlap with other courses
 - Pattern Recognition (B.Sc.)
 - Machine Learning (M.Sc.)
- focus on algorithmic core of model-based AI

Under Construction...

- ► A course is never "done".
- We are always happy about feedback, corrections and suggestions!

M. Helmert (University of Basel)