
Algorithms and Data Structures
C8. Concepts

Gabriele Röger

University of Basel

May 30, 2024

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 1 / 20

Algorithms and Data Structures
May 30, 2024 — C8. Concepts

C8.1 Divide and Conquer

C8.2 Dynamic Programming

C8.3 Greedy Algorithms

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 2 / 20

C8. Concepts Divide and Conquer

C8.1 Divide and Conquer

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 3 / 20

C8. Concepts Divide and Conquer

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 4 / 20

C8. Concepts Divide and Conquer

Recap: Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly.

Recursive case: Otherwise

Divide the problem into disjoint subproblems
that are smaller instances of the same
problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

Examples: Strassen’s algorithm for multiplying square matrices,
merge sort

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 5 / 20

C8. Concepts Dynamic Programming

C8.2 Dynamic Programming

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 6 / 20

C8. Concepts Dynamic Programming

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 7 / 20

C8. Concepts Dynamic Programming

Dynamic Programming

Dynamic programming solves a problem by solving overlapping
subproblems and combining their solutions.

Requirements:

▶ optimal substructure: (optimal) solutions of subproblems can
be combined to (optimal) solutions of original problem

▶ overlapping subproblems: solving the subproblems requires
solving common subsubproblems.

Solve each subsubproblem only once and store its solution.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 8 / 20

C8. Concepts Dynamic Programming

Two Variants

▶ Top-down: Recursively call the algorithm for subproblems. If
there already is a stored solution for the subproblem, use it.
Otherwise solve it (recursively) and memoize its solution.

▶ Bottom-up: Solve the smallest subproblems first and combine
their solutions into solutions of larger and larger subproblems.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 9 / 20

C8. Concepts Dynamic Programming

Example: Fibonacci Numbers

The n-th Fibonacci number is

Fib(n) =

0 if n = 0

1 if n = 1

Fib(n − 1) + Fib(n − 2) otherwise.

We want to compute the n-th Fibonacci number.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 10 / 20

C8. Concepts Dynamic Programming

Naive Implementation

def fibonacci(n):

if n <= 1:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Exponential running time!

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 11 / 20

C8. Concepts Dynamic Programming

Dynamic Programming: Top-Down Variant

values = {0 : 0, 1 : 1}

def fibonacci(n):

if n not in values:

values[n] = fibonacci(n-1) + fibonacci(n-2)

return values[n]

Linear running time

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 12 / 20

C8. Concepts Dynamic Programming

Dynamic Programming: Bottom-up Variant

def fibonacci(n):

if n <= 1:

return n

prev_fib = 0

curr_fib = 1

for i in range(2, n+1):

next_fib = prev_fib + curr_fib

prev_fib = curr_fib

curr_fib = next_fib

return curr_fib

Linear running time

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 13 / 20

C8. Concepts Greedy Algorithms

C8.3 Greedy Algorithms

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 14 / 20

C8. Concepts Greedy Algorithms

Content of the Course

A&DS

sorting

complexity
analysis

fundamental
data structures

searching

graph
algorithms

concepts

divide &
conquer

dynamic
programming

greedy
algorithms

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 15 / 20

C8. Concepts Greedy Algorithms

Greedy Algorithms

▶ A greedy algorithm always makes the choice that looks best at
the moment (locally optimal choice).

▶ Some problems can be solved optimally with a greedy
algorithm, but in general they lead to suboptimal solutions.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 16 / 20

C8. Concepts Greedy Algorithms

Example: Prim’s Algorithm for Minimum Spanning Trees

Prim’s Algorithm
▶ Choose a random node as initial tree.

▶ Let the tree grow by one additional edge in each step.

▶ Always add an edge of minimal weight
that has exactly one end point in the tree.
→ locally optimal choice of edge

▶ Stop after adding |V | − 1 edges.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 17 / 20

C8. Concepts Greedy Algorithms

Knapsack Problem

▶ A burglar wants to steal items from a house and
can carry at most K kilos.

▶ There are n items, where the ith items is worth vi CHF and
weights wi kilos.

▶ The burglar wants to maximize the value of the stolen items.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 18 / 20

C8. Concepts Greedy Algorithms

Knapsack Problem: Greedy Strategy

▶ Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .

▶ Not guaranteed to lead to an optimal solution
e.g. K = 30,w1 = 20, v1 = 20,w2 = w3 = 15.v2 = v3 = 12

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 19 / 20

C8. Concepts Greedy Algorithms

Variant: Fractional Knapsack Problem

▶ In the fractional variant, the burglar can take away fractional
amounts of an item.
Think of the items as bags of gold dust.

▶ Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .
If at the end there is room for a fraction of the next best
item, take that fraction.

▶ Greedy strategy solves the problem optimally.

G. Röger (University of Basel) Algorithms and Data Structures May 30, 2024 20 / 20

	Divide and Conquer
	

	Dynamic Programming
	

	Greedy Algorithms
	

