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C8. Concepts Divide and Conquer

Recap: Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly.

Recursive case: Otherwise

Divide the problem into disjoint subproblems
that are smaller instances of the same
problem.

Conquer the subproblems by solving them
recursively.

Combine the subproblem solutions to form a
solution to the original problem.

Examples: Strassen’s algorithm for multiplying square matrices,
merge sort
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C8. Concepts Dynamic Programming

Dynamic Programming

Dynamic programming solves a problem by solving overlapping
subproblems and combining their solutions.

Requirements:

▶ optimal substructure: (optimal) solutions of subproblems can
be combined to (optimal) solutions of original problem

▶ overlapping subproblems: solving the subproblems requires
solving common subsubproblems.

Solve each subsubproblem only once and store its solution.
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C8. Concepts Dynamic Programming

Two Variants

▶ Top-down: Recursively call the algorithm for subproblems. If
there already is a stored solution for the subproblem, use it.
Otherwise solve it (recursively) and memoize its solution.

▶ Bottom-up: Solve the smallest subproblems first and combine
their solutions into solutions of larger and larger subproblems.
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C8. Concepts Dynamic Programming

Example: Fibonacci Numbers

The n-th Fibonacci number is

Fib(n) =


0 if n = 0

1 if n = 1

Fib(n − 1) + Fib(n − 2) otherwise.

We want to compute the n-th Fibonacci number.
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C8. Concepts Dynamic Programming

Naive Implementation

def fibonacci(n):

if n <= 1:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Exponential running time!
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C8. Concepts Dynamic Programming

Dynamic Programming: Top-Down Variant

values = {0 : 0, 1 : 1}

def fibonacci(n):

if n not in values:

values[n] = fibonacci(n-1) + fibonacci(n-2)

return values[n]

Linear running time
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C8. Concepts Dynamic Programming

Dynamic Programming: Bottom-up Variant

def fibonacci(n):

if n <= 1:

return n

prev_fib = 0

curr_fib = 1

for i in range(2, n+1):

next_fib = prev_fib + curr_fib

prev_fib = curr_fib

curr_fib = next_fib

return curr_fib

Linear running time
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C8. Concepts Greedy Algorithms

Greedy Algorithms

▶ A greedy algorithm always makes the choice that looks best at
the moment (locally optimal choice).

▶ Some problems can be solved optimally with a greedy
algorithm, but in general they lead to suboptimal solutions.
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C8. Concepts Greedy Algorithms

Example: Prim’s Algorithm for Minimum Spanning Trees

Prim’s Algorithm
▶ Choose a random node as initial tree.

▶ Let the tree grow by one additional edge in each step.

▶ Always add an edge of minimal weight
that has exactly one end point in the tree.
→ locally optimal choice of edge

▶ Stop after adding |V | − 1 edges.
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C8. Concepts Greedy Algorithms

Knapsack Problem

▶ A burglar wants to steal items from a house and
can carry at most K kilos.

▶ There are n items, where the ith items is worth vi CHF and
weights wi kilos.

▶ The burglar wants to maximize the value of the stolen items.
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C8. Concepts Greedy Algorithms

Knapsack Problem: Greedy Strategy

▶ Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .

▶ Not guaranteed to lead to an optimal solution
e.g. K = 30,w1 = 20, v1 = 20,w2 = w3 = 15.v2 = v3 = 12
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C8. Concepts Greedy Algorithms

Variant: Fractional Knapsack Problem

▶ In the fractional variant, the burglar can take away fractional
amounts of an item.
Think of the items as bags of gold dust.

▶ Greedy strategy: grab the items with the highest value per
weight vi/wi as long as the total weight does not exceed K .
If at the end there is room for a fraction of the next best
item, take that fraction.

▶ Greedy strategy solves the problem optimally.
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