Algorithms and Data Structures C8. Concepts

Gabriele Röger

University of Basel

May 30, 2024

Algorithms and Data Structures May 30, 2024 — C8. Concepts

C8.1 Divide and Conquer

C8.2 Dynamic Programming

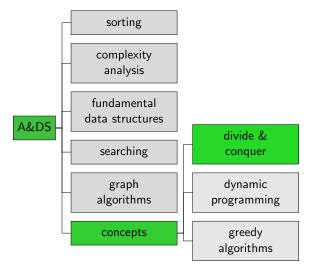
C8.3 Greedy Algorithms

C8. Concepts Divide and Conquer

C8.1 Divide and Conquer

C8. Concepts Divide and Conquer

Content of the Course



C8. Concepts Divide and Conquer

Recap: Divide-and-Conquer Algorithm Scheme

Base case: If the problem is small enough, solve it directly.

Recursive case: Otherwise

Divide the problem into disjoint subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.

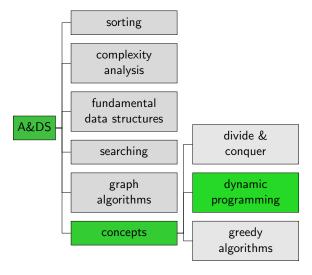
Combine the subproblem solutions to form a solution to the original problem.

Examples: Strassen's algorithm for multiplying square matrices, merge sort

C8.2 Dynamic Programming

C8. Concepts Dynamic Programming

Content of the Course



C8. Concepts Dynamic Programming

Dynamic Programming

Dynamic programming solves a problem by solving overlapping subproblems and combining their solutions.

Requirements:

- optimal substructure: (optimal) solutions of subproblems can be combined to (optimal) solutions of original problem
- overlapping subproblems: solving the subproblems requires solving common subsubproblems.

Solve each subsubproblem only once and store its solution.

Dynamic Programming

Two Variants

- ▶ Top-down: Recursively call the algorithm for subproblems. If there already is a stored solution for the subproblem, use it. Otherwise solve it (recursively) and memoize its solution.
- ▶ Bottom-up: Solve the smallest subproblems first and combine their solutions into solutions of larger and larger subproblems.

Example: Fibonacci Numbers

The *n*-th Fibonacci number is

$$Fib(n) = egin{cases} 0 & \text{if } n = 0 \ 1 & \text{if } n = 1 \ Fib(n-1) + Fib(n-2) & \text{otherwise.} \end{cases}$$

We want to compute the *n*-th Fibonacci number.

Naive Implementation

```
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)</pre>
```

Exponential running time!

Dynamic Programming: Top-Down Variant

```
values = {0 : 0, 1 : 1}

def fibonacci(n):
    if n not in values:
       values[n] = fibonacci(n-1) + fibonacci(n-2)
    return values[n]
```

Linear running time

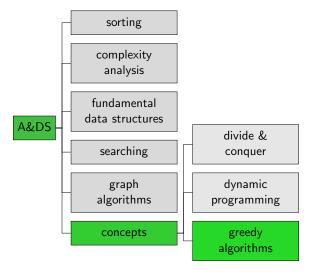
Dynamic Programming: Bottom-up Variant

```
def fibonacci(n):
    if n <= 1:
        return n
    prev_fib = 0
    curr_fib = 1
    for i in range(2, n+1):
        next_fib = prev_fib + curr_fib
        prev_fib = curr_fib
        curr_fib = next_fib
    return curr_fib</pre>
```

Linear running time

C8.3 Greedy Algorithms

Content of the Course



Greedy Algorithms

- A greedy algorithm always makes the choice that looks best at the moment (locally optimal choice).
- Some problems can be solved optimally with a greedy algorithm, but in general they lead to suboptimal solutions.

Example: Prim's Algorithm for Minimum Spanning Trees

Prim's Algorithm

- Choose a random node as initial tree.
- Let the tree grow by one additional edge in each step.
- Always add an edge of minimal weight that has exactly one end point in the tree.
 - \rightarrow locally optimal choice of edge
- ▶ Stop after adding |V| 1 edges.

Knapsack Problem

- ▶ A burglar wants to steal items from a house and can carry at most K kilos.
- There are n items, where the ith items is worth v_i CHF and weights w_i kilos.
- ▶ The burglar wants to maximize the value of the stolen items.

Knapsack Problem: Greedy Strategy

- ▶ Greedy strategy: grab the items with the highest value per weight v_i/w_i as long as the total weight does not exceed K.
- Not guaranteed to lead to an optimal solution e.g. K = 30, $w_1 = 20$, $v_1 = 20$, $w_2 = w_3 = 15$. $v_2 = v_3 = 12$

Variant: Fractional Knapsack Problem

- In the fractional variant, the burglar can take away fractional amounts of an item.
 - Think of the items as bags of gold dust.
- Greedy strategy: grab the items with the highest value per weight v_i/w_i as long as the total weight does not exceed K. If at the end there is room for a fraction of the next best item, take that fraction.
- Greedy strategy solves the problem optimally.