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Other Graph Problems Quiz

Crash Course Complexity Theory

Decision problems: Seeking a Yes/No answer
Given weighted graph, vertices s, t and number K.
Is there a path from s to t that costs at most K?

Search problem: Seeking an actual solution
Given weighted graph and vertices s, t.
Find a shortest path from s to t.
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Crash Course Complexity Theory

We distinguish different classes of problems:

P: decision problems that can be solved with a
polynomial-time algorithm (in O(p) for some polynomial p).

NP: decision problems, where the yes instances have
proofs that can be verified in polynomial time.
Proof: e.g. specific path of cost ≤ K

P ̸= NP? We do not know.

NP-hard problems: Problems that are at least as hard as the
hardest problems in NP.
→ no polynomial-time algorithms known.

NP-complete decision problems: NP-hard & in NP

NP-equivalent search problems: corresponding decision
problem NP-complete.



Other Graph Problems Quiz

Crash Course Complexity Theory

We distinguish different classes of problems:

P: decision problems that can be solved with a
polynomial-time algorithm (in O(p) for some polynomial p).

NP: decision problems, where the yes instances have
proofs that can be verified in polynomial time.
Proof: e.g. specific path of cost ≤ K

P ̸= NP? We do not know.

NP-hard problems: Problems that are at least as hard as the
hardest problems in NP.
→ no polynomial-time algorithms known.

NP-complete decision problems: NP-hard & in NP

NP-equivalent search problems: corresponding decision
problem NP-complete.



Other Graph Problems Quiz

Crash Course Complexity Theory

We distinguish different classes of problems:

P: decision problems that can be solved with a
polynomial-time algorithm (in O(p) for some polynomial p).

NP: decision problems, where the yes instances have
proofs that can be verified in polynomial time.
Proof: e.g. specific path of cost ≤ K

P ̸= NP? We do not know.

NP-hard problems: Problems that are at least as hard as the
hardest problems in NP.
→ no polynomial-time algorithms known.

NP-complete decision problems: NP-hard & in NP

NP-equivalent search problems: corresponding decision
problem NP-complete.



Other Graph Problems Quiz

Crash Course Complexity Theory

We distinguish different classes of problems:

P: decision problems that can be solved with a
polynomial-time algorithm (in O(p) for some polynomial p).

NP: decision problems, where the yes instances have
proofs that can be verified in polynomial time.
Proof: e.g. specific path of cost ≤ K

P ̸= NP? We do not know.

NP-hard problems: Problems that are at least as hard as the
hardest problems in NP.
→ no polynomial-time algorithms known.

NP-complete decision problems: NP-hard & in NP

NP-equivalent search problems: corresponding decision
problem NP-complete.



Other Graph Problems Quiz

Crash Course Complexity Theory

We distinguish different classes of problems:

P: decision problems that can be solved with a
polynomial-time algorithm (in O(p) for some polynomial p).

NP: decision problems, where the yes instances have
proofs that can be verified in polynomial time.
Proof: e.g. specific path of cost ≤ K

P ̸= NP? We do not know.

NP-hard problems: Problems that are at least as hard as the
hardest problems in NP.
→ no polynomial-time algorithms known.

NP-complete decision problems: NP-hard & in NP

NP-equivalent search problems: corresponding decision
problem NP-complete.



Other Graph Problems Quiz

Crash Course Complexity Theory

We distinguish different classes of problems:

P: decision problems that can be solved with a
polynomial-time algorithm (in O(p) for some polynomial p).

NP: decision problems, where the yes instances have
proofs that can be verified in polynomial time.
Proof: e.g. specific path of cost ≤ K

P ̸= NP? We do not know.

NP-hard problems: Problems that are at least as hard as the
hardest problems in NP.
→ no polynomial-time algorithms known.

NP-complete decision problems: NP-hard & in NP

NP-equivalent search problems: corresponding decision
problem NP-complete.



Other Graph Problems Quiz

Flows in Graphs I

Definition (Flow Network)

A flow network N = (G , s, t, k) is given by

a directed graph G = (V ,E ),

a source s ∈ V ,

a sink t ∈ V , and

a capacity function k : E → R∞
+ .
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Flows in Graphs II

Definition (Flow)

An s-t flow f assigns every edge a value from R≥0, where

the value does not exceed the capacity of the edge::

f (e) ≤ k(e) for all e ∈ E

for all vertices except for the source and the sink
the incoming flow matches the outgoing flow:∑

(u,w)∈E
w=v

f ((u,w)) =
∑

(u,w)∈E
u=v

f ((u,w)) for all v ∈ V \ {s, t}

The value of the flow is the net flow into the sink:

|f | =
∑

(u,w)∈E
w=t

f ((u,w))−
∑

(u,w)∈E
u=t

f ((u,w))
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Example
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How hard is it to find a maximal flow?

For example with the Edmonds-Karp algorithm in O(|E |2|V |)
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Cliques

Definition (Clique)

A clique in an undirected graph (V ,E ) is a subset C ⊆ V of the
vertices such that each pair of distinct vertices in C is connected
by an edge: for u, v ∈ C with u ̸= v it holds that {u, v} ∈ E .
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How hard is it, to determine a largest clique in a graph?
NP-equivalent
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Graph Isomorphism

Definition (Graph Isomorphism)

Two graphs are isomorphic, if they are identical up to renaming
vertices.
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How hard is it to decide whether two given graphs are isomorphic?
In NP, but unknown whether in P and/or NP-complete
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Graph Coloring

Definition (k-Colorability)

An undirected graph G = (V ,E ) is k-colorable (k ∈ N),
if there is a coloring f : V → {1, . . . , k} with f (v) ̸= f (w) for all
{v ,w} ∈ E .
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How hard is it to decide
whether a give graph is k-colorable?

NP-complete
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Seven Bridges of Königsberg

Is there a walk through the city crossing each bridge exactly once?
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Eulerian Trail

Definition (Eulerian Trail)

An Eulerian trail is a path that uses every edge exactly once.

How hard is it to decide
whether a graph has an
Eulerian trail?

Has Eulerian trail iff exactly zero or two
vertices have odd degree, and all of its
vertices with nonzero degree belong to a
single connected component.
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