Algorithms and Data Structures
C7. Graphs: Outlook

Gabriele Röger

University of Basel
May 29, 2024

Algorithms and Data Structures
May 29, 2024 - C7. Graphs: Outlook

C7.1 Other Graph Problems

- Decision problems: Seeking a Yes/No answer

Given weighted graph, vertices s , t and number K.
Is there a path from s to t that costs at most K ?

- Search problem: Seeking an actual solution

Given weighted graph and vertices s, t.
Find a shortest path from s to t.

Flows in Graphs II

Definition (Flow)

An s-t flow f assigns every edge a value from $\mathbb{R}_{\geq 0}$, where

- the value does not exceed the capacity of the edge::

$$
f(e) \leq k(e) \text { for all } e \in E
$$

- for all vertices except for the source and the sink the incoming flow matches the outgoing flow:

$$
\sum_{\substack{(u, w) \in E \\ w=v}} f((u, w))=\sum_{\substack{(u, w) \in E \\ u=v}} f((u, w)) \text { for all } v \in V \backslash\{s, t\}
$$

The value of the flow is the net flow into the sink:

$$
|f|=\sum_{\substack{(u, w) \in E \\ w=t}} f((u, w))-\sum_{\substack{(u, w) \in E \\ u=t}} f((u, w))
$$

Example

How hard is it to find a maximal flow? For example with the Edmonds-Karp algorithm in $O\left(|E|^{2}|V|\right)$

Cliques

Definition (Clique)

A clique in an undirected graph (V, E) is a subset $C \subseteq V$ of the vertices such that each pair of distinct vertices in C is connected by an edge: for $u, v \in C$ with $u \neq v$ it holds that $\{u, v\} \in E$.

How hard is it, to determine a largest clique in a graph? NP-equivalent
G. Röger (University of Basel)

Algorithms and Data Structures
May 29, 2024
C7. Graphs: Outlook
Graph Coloring
Definition (k-Colorability)
An undirected graph $G=(V, E)$ is k-colorable $(k \in \mathbb{N})$,
if there is a coloring $f: V \rightarrow\{1, \ldots, k\}$ with $f(v) \neq f(w)$ for all
$\{v, w\} \in E$.

Is there a walk through the city crossing each bridge exactly once?
Eulerian Trail

Definition (Eulerian Trail)

An Eulerian trail is a path that uses every edge exactly once.

How hard is it to decide whether a graph has an
Eulerian trail?

Has Eulerian trail iff exactly zero or two vertices have odd degree, and all of its vertices with nonzero degree belong to a single connected component.

