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Edsger Dijkstra

Edsger Dijkstra

Dutch mathematician, 1930–2002

Advocate and co-developer of structured
programming

Contributed to the development of
programming language Algol 60
1968: Essay “Go To Statement
Considered Harmful”

1959: Shortest-path algorithm

Winner of Turing Award (1972)

“Do only what only you can do.”
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Dijkstra’s Algorithm: High-Level Perspective

Dijkstra’s algorithm (for non-negative edge weights)

Grow shortest-paths tree starting from vertex s:

Consider vertices (that are not yet in the tree) in increasing
order of their distance from s.

Add the next vertex to the tree and relax its outgoing edges.



Dijkstra’s Algorithm Acyclic Graphs Bellman-Ford Algorithm Summary

Dijkstra’s Algorithm: Illustration

0

1

2

3

4

5

6

7

18

8

5

3

5

2

13

4

1

6

12

5

6
8

12

16

4

distance

0 0

1 ∞
2 ∞
3 ∞
4 ∞
5 ∞
6 ∞
7 ∞



Dijkstra’s Algorithm Acyclic Graphs Bellman-Ford Algorithm Summary
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Dijkstra’s Algorithm: Illustration
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Dijkstra’s Algorithm: Illustration
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Dijkstra’s Algorithm: Illustration
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Dijkstra’s Algorithm: Illustration
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Dijkstra’s Algorithm: Illustration
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Dijkstra’s Algorithm: Illustration
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Dijkstra’s Algorithm: Illustration
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Data Structures

edge to: vertex-indexed array, containing at position v
the last edge of a shortest known path.

distance: vertex-indexed array, containing at position v the
cost of the shortest known paths from the start vertex to v .

pq: indexed priority queue of vertices

vertex not yet in the tree
some path to the vertex is known
sorted by the cost of the shortest known path to the vertex.
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Dijkstra’s Algorithm

1 class DijkstraSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 pq = IndexMinPQ()

6 self.distance[start_node] = 0

7 pq.insert(start_node, 0)

8 while not pq.empty():

9 self.relax(graph, pq.del_min(), pq)

10

11 def relax(self, graph, v, pq):

12 for edge in graph.outgoing_edges(v):

13 w = edge.to_node()

14 if self.distance[v] + edge.weight() < self.distance[w]:

15 self.edge_to[w] = edge

16 self.distance[w] = self.distance[v] + edge.weight()

17 if pq.contains(w):

18 pq.change(w, self.distance[w])

19 else:

20 pq.insert(w, self.distance[w])
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Correctness

Theorem

Dijkstra’s algorithm solves the single-source shortest path
problem in digraphs with non-negative edge weights.

Proof.

If v is reachable from the start vertex, every outgoing edge
e = (v ,w) will be relaxed exactly once (when v is relaxed).

It then holds that distance[w ] ≤ distance[v ] + weight(e).

Inequality stays satisfied:

distance[v ] won’t be changed because the value was minimal
and there are no negative edge weights.
distance[w ] can only become smaller.

If all reachable edges have been relaxed, the optimality
criterion is satisfied.
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Comparison to Prim’s Algorithm

Dijkstra’s algorithm is very similar to the eager variant of Prim’s
algorithm for minimum spanning trees.

Both successively grow a tree.

Prim’s next vertex: minimal distance from the grown tree.

Dijkstra’s next vertex: minimal distance from the start vertex.

included nodes used in Prim’s algorithm is not necessary in
Dijkstra’s algorithm, because for already included vertices the
if condition in line 19 (Prim) is always false.

Running time O(|E | log |V |) and memory O(|V |) directly transfer.
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Acyclic Graphs
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Exploiting Acyclicity

Given: acyclic weighted digraph
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Example

Idea: Relax vertices in topological order
Idea: e.g. 0, 1, 3, 4, 2, 5, 7, 6
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Example

Idea: Relax vertices in topological order
Idea: e.g. 0, 1, 3, 4, 2, 5, 7, 6
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Example
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Theorem

Theorem

Relaxing the vertices in topological order, we can solve the
single-source shortest path problem for weighted acyclic digraphs
in time O(|E |+ |V |).

Proof.

Every edge e = (v ,w) gets relaxed exactly once.
Directly afterwards it holds that
distance[w ] ≤ distance[v ] + weight(e).

Inequality satisfied until termination

distance[w ] never becomes larger.
distance[v ] does not get changed anymore
because all incoming edges have already been relaxed.

→ Optimality criterion is satisfied at termination.



Dijkstra’s Algorithm Acyclic Graphs Bellman-Ford Algorithm Summary

Theorem

Theorem

Relaxing the vertices in topological order, we can solve the
single-source shortest path problem for weighted acyclic digraphs
in time O(|E |+ |V |).

Proof.

Every edge e = (v ,w) gets relaxed exactly once.
Directly afterwards it holds that
distance[w ] ≤ distance[v ] + weight(e).

Inequality satisfied until termination

distance[w ] never becomes larger.
distance[v ] does not get changed anymore
because all incoming edges have already been relaxed.

→ Optimality criterion is satisfied at termination.



Dijkstra’s Algorithm Acyclic Graphs Bellman-Ford Algorithm Summary

Related Problems: Longest Path

Definition (Longest paths in acyclic graphs)

Given: weighted acyclic digraph, start vertex s
Question: Is there a path from s to vertex v?

If yes, return such a path with maximum weight.

Multiply all weights with −1 and use shortest-path algorithm.
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Related Problems: Critical Path

Given:

Set of jobs a, each requires time ta

Constraints a → a′, requiring that a must have been finished
before a′ can be started (in solvable problems acyclic).

Question:

Assumption: We can do arbitrarily many jobs in parallel.

How long do we need for getting all jobs done?
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Related Problems: Critical Path

Create a weighted digraph:

Vertices s, e + for every job a two vertices as and ae
for all a:

edge (s, as) with weight 0
edge (ae, e) with weight 0
edge (as, ae) with weight ta

for every constraint a → a′ edge (ae, a
′
s) with weight 0

Critical path for job a is longest path from s to as.
Define start time for a as weight of a critical path.
→ Results in optimal total execution time

(= weight of longest path from s to e)
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Bellman-Ford Algorithm
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Problem

With negative edge weights there can be negative cycles, i.e.
cycles, where the sum of edge weights is negative.

If a vertex of such a cycle is on a path from s to v , we can
find paths whose weight is lower than any given value.
→ not a well-defined problem

Alternative question: Find a shortest simple path?
→ NP-hard (= very hard) problem
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Question

In many practical applications, negative cycles indicate a modeling
error.

New Questions

Given: Weighted digraph, start vertex s

Question: Is there a negative cycle that is reachable from s?
If not, compute the shortest-path tree
to all reachable vertices.
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Bellman-Ford Algorithm: High-Level Perspective

In graphs without negative cycles (but with negative weights);

Bellman-Ford Algorithm

Initialize distance[s] = 0 for start vertex s,
distance[n] = ∞ for all other vertices.

Afterwards |V | iterations, each relaxing all edges.

Proposition

The approach solves the single-source shortest path problem for
graphs without negative cycles in time O(|E ||V |) and with
additional memory O(|V |).

Proof idea: After i iterations, every found path to v has at most
the weight as any path to v with at most i edges.
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More Efficient Variant

If distance[v ] did not change in iteration i , relaxing an
outgoing edge of v in iteration i + 1 has no effect.

Idea: Remember the vertices with a changed distance
in a queue.

Does not improve the worst-case behavior but in practice
much faster.
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What about Negative Cycles?

If no negative cycles is reachable from s, then in the |V |-th
iteration no vertex distance will get updated anymore.

If there is a reachable negative cycle, this will lead to a cycle
in the edges stored in edge to.

In practice, we test this after relaxing the outgoing edges of
certain number of vertices (e.g. |V | many).
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Bellman-Ford Algorithm

1 class BellmanFordSSSP:

2 def __init__(self, graph, start_node):

3 self.edge_to = [None] * graph.no_nodes()

4 self.distance = [float('inf')] * graph.no_nodes()

5 self.in_queue = [False] * graph.no_nodes()

6 self.queue = deque()

7 self.calls_to_relax = 0

8 self.cycle = None

9

10 self.distance[start_node] = 0

11 self.queue.append(start_node)

12 self.in_queue[start_node] = True

13 while (not self.has_negative_cycle() and

14 self.queue): # queue not empty

15 node = self.queue.popleft()

16 self.in_queue[node] = False

17 self.relax(graph, node)

18
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Bellman-Ford Algorithm (Continued)

19 def relax(self, graph, v):

20 for edge in graph.outgoing_edges(v):

21 w = edge.to_node()

22 if self.distance[v] + edge.weight() < self.distance[w]:

23 self.edge_to[w] = edge

24 self.distance[w] = self.distance[v] + edge.weight()

25 if not self.in_queue[w]:

26 self.queue.append(w)

27 self.in_queue[w] = True

28 self.calls_to_relax += 1

29 if self.calls_to_relax % graph.no_nodes() == 0:

30 self.find_negative_cycle()

31
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Bellman-Ford Algorithm (Continued)

32 def has_negative_cycle(self):

33 return self.cycle is not None

34

35 def find_negative_cycle(self):

36 no_nodes = len(self.distance)

37 graph = EdgeWeightedDigraph(no_nodes)

38 for edge in self.edge_to:

39 if edge is not None:

40 graph.add_edge(edge)

41

42 cycle_finder = WeightedDirectedCycle(graph)

43 self.cycle = cycle_finder.get_cycle()

WeightedDirectedCycle detects directed cycles in weighted
graphs.
→ Sequence of depth-first searches as in DirectedCycle (C2)
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Summary
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Summary

Non-negative weights

Very common problem.
Dijkstra’s Algorithm with running time O(|E | log |V |)

Acyclic Graphs

Should be exploited if it occurs in an application.
With topological order in linear time O(|E |+ |V |)

Negative weights or negative cycles

If there is no negative cycle, the Bellman-Ford algorithm finds
shortest paths.
Otherwise it identifies a negative cycle.


	Dijkstra's Algorithm
	

	Acyclic Graphs
	

	Bellman-Ford Algorithm
	

	Summary
	


