Algorithms and Data Structures
C6. Shortest Paths: Algorithms

Gabriele Röger

University of Basel

May 23, 2024

Edsger Dijkstra

- Dutch mathematician, 1930-2002
- Advocate and co-developer of structured programming
- Contributed to the development of programming language Algol 60
- 1968: Essay "Go To Statement Considered Harmful"
- 1959: Shortest-path algorithm
- Winner of Turing Award (1972)

[^0]

Dijkstra's Algorithm: High-Level Perspective

Dijkstra's algorithm (for non-negative edge weights)
Grow shortest-paths tree starting from vertex s :

- Consider vertices (that are not yet in the tree) in increasing order of their distance from s.
- Add the next vertex to the tree and relax its outgoing edges.


```
class DijkstraSSSP:
    def __init__(self, graph, start_node):
        self.edge_to = [None] * graph.no_nodes()
        self.distance = [float('inf')] * graph.no_nodes()
        pq = IndexMinPQ()
        self.distance[start_node] = 0
        pq.insert(start_node, 0)
        while not pq.empty():
            self.relax(graph, pq.del_min(), pq)
    def relax(self, graph, v, pq):
        for edge in graph.outgoing_edges(v):
            w = edge.to_node()
            if self.distance[v] + edge.weight() < self.distance[w]:
            self.edge_to[w] = edge
            self.distance[w] = self.distance[v] + edge.weight()
            if pq.contains(w):
                    pq.change(w, self.distance[w])
            else:
            pq.insert(w, self.distance[w])
```

G. Röger (University of Basel)
Algorithms and Data Structures

Theorem

Dijkstra's algorithm solves the single-source shortest path problem in digraphs with non-negative edge weights.

Proof.

- If v is reachable from the start vertex, every outgoing edge $e=(v, w)$ will be relaxed exactly once (when v is relaxed).
- It then holds that distance $[w] \leq$ distance $[v]+$ weight (e).
- Inequality stays satisfied:
- distance[v] won't be changed because the value was minimal and there are no negative edge weights.
- distance[w] can only become smaller.
- If all reachable edges have been relaxed, the optimality criterion is satisfied.
C6. Shortest Paths: Algorithms Dijkstra's Algorithm

C6.2 Acyclic Graphs

- Prim's next vertex: minimal distance from the grown tree.
- Dijkstra's next vertex: minimal distance from the start vertex.
- included_nodes used in Prim's algorithm is not necessary in Dijkstra's algorithm, because for already included vertices the if condition in line 19 (Prim) is always false.

Running time $O(|E| \log |V|)$ and memory $O(|V|)$ directly transfer.

Exploiting Acyclicity
Given: acyclic weighted digraph

Can we exploit acylicity during the computation of shortest paths?
G. Röger (University of Basel)

Algorithms and Data Structures
May 23, 2024

C6. Shortest Paths: Algorithms
Acyclic Graphs
Theorem

Theorem

Relaxing the vertices in topological order, we can solve the single-source shortest path problem for weighted acyclic digraphs in time $O(|E|+|V|)$.

Proof.

- Every edge $e=(v, w)$ gets relaxed exactly once.

Directly afterwards it holds that
distance $[w] \leq$ distance $[v]+$ weight (e).

- Inequality satisfied until termination
- distance $[w]$ never becomes larger.
- distance[v] does not get changed anymore
because all incoming edges have already been relaxed.
\rightarrow Optimality criterion is satisfied at termination.

Definition (Longest paths in acyclic graphs)
Given: weighted acyclic digraph, start vertex s
Question: Is there a path from s to vertex v ?
If yes, return such a path with maximum weight.

Multiply all weights with -1 and use shortest-path algorithm.

C6.3 Bellman-Ford Algorithm

- With negative edge weights there can be negative cycles, i.e. cycles, where the sum of edge weights is negative.
- If a vertex of such a cycle is on a path from s to v, we can find paths whose weight is lower than any given value \rightarrow not a well-defined problem
- Alternative question: Find a shortest simple path? \rightarrow NP-hard (= very hard) problem

Bellman-Ford Algorithm: High-Level Perspective

In graphs without negative cycles (but with negative weights);
Bellman-Ford Algorithm

- Initialize distance[s]=0 for start vertex s, distance $[n]=\infty$ for all other vertices.
- Afterwards $|V|$ iterations, each relaxing all edges.

Proposition

The approach solves the single-source shortest path problem for graphs without negative cycles in time $O(|E \| V|)$ and with additional memory $O(|V|)$.

Proof idea: After i iterations, every found path to v has at most the weight as any path to v with at most i edges.

- If distance[v] did not change in iteration i, relaxing an outgoing edge of v in iteration $i+1$ has no effect.
- Idea: Remember the vertices with a changed distance in a queue.
- Does not improve the worst-case behavior but in practice much faster.
- If no negative cycles is reachable from s, then in the $|V|$-th iteration no vertex distance will get updated anymore.
- If there is a reachable negative cycle, this will lead to a cycle in the edges stored in edge_to.
- In practice, we test this after relaxing the outgoing edges of certain number of vertices (e.g. $|V|$ many).

Bellman-Ford Algorithm

```
Bellman-Ford Algorithm (Continued)
```

def relax (self, graph, v):
for edge in graph.outgoing_edges(v):
w = edge.to_node()
if self.distance[v] + edge.weight() < self.distance[w]:
self.edge_to $[\mathrm{w}]=$ edge
self.distance[w] = self.distance[v] + edge.weight()
if not self.in_queue[w]:
self.queue.append (w)
self.in_queue[w] = True
self.calls_to_relax +=
if self.calls_to_relax \% graph.no_nodes() == 0:
self.find_negative_cycle()

```
class BellmanFordSSSP:
    def __init__(self, graph, start_node):
        self.edge_to = [None] * graph.no_nodes()
        self.distance = [float('inf')] * graph.no_nodes()
        self.in_queue = [False] * graph.no_nodes()
        self.queue = deque()
        self.calls_to_relax = 0
        self.cycle = None
        self.distance[start_node] = 0
        self.queue.append(start_node)
        self.in_queue[start_node] = True
        while (not self.has_negative_cycle() and
            self.queue): # queue not empty
        node = self.queue.popleft()
        self.in_queue[node] = False
        self.relax(graph, node)
```

```
def has_negative_cycle(self):
    return self.cycle is not None
def find_negative_cycle(self):
    no_nodes = len(self.distance)
    graph = EdgeWeightedDigraph(no_nodes)
for edge in self.edge_to:
if edge is not None:
graph.add_edge(edge)
cycle_finder = WeightedDirectedCycle(graph) self.cycle = cycle_finder.get_cycle()
```


C6.4 Summary

WeightedDirectedCycle detects directed cycles in weighted graphs.
\rightarrow Sequence of depth-first searches as in DirectedCycle (C2)

- Non-negative weights
- Very common problem.
- Dijkstra's Algorithm with running time $O(|E| \log |V|)$

- Acyclic Graphs

- Should be exploited if it occurs in an application.
- With topological order in linear time $O(|E|+|V|)$
- Negative weights or negative cycles
- If there is no negative cycle, the Bellman-Ford algorithm finds shortest paths.
- Otherwise it identifies a negative cycle.

[^0]: "Do only what only you can do."

